Продвинутый покупатель, выбирая новое устройство в онлайн-каталоге магазина электроники, тщательно изучает все спецификации и функции, обращая свое внимание в первую очередь на характеристики дисплея. Дисплей устройства – это, в сущности, важнейший компонент в любой мобильной или стационарной системе, поскольку именно на него обращен наш взгляд практически все время нашей работы с устройством.
Сегодня в перечне спецификаций мониторов, ноутбуков, планшетов и смартфонов в графе «Дисплей» очень часто встречается аббревиатура IPS. Многие знают, что все современные дисплеи основаны на технологии «жидких кристаллов» — отсюда и общее название жидкокристаллических дисплеев: LCD. Некоторые осведомлены о том, что существует несколько типов TFT LCD-матриц. Попробуем разобраться в том, что из себя представляет стремительно набирающий – а в отдельных сегментах уже набравший – популярность вид LCD-дисплеев, именуемый IPS.
Технология IPS, что расшифровывается как In-plane switching (то есть «переключение в одной плоскости»), была создана компанией Hitachi в далеком 1996 году, когда и «обычные» Twisted Nematic-или TN-матрицы для многих оставались предметом мечтаний. Впрочем, уже тогда как минимум два недостатка TN-матриц указывали на их несовершенство: это сравнительно небольшие углы обзора и не самая точная цветопередача.
Что лучше IPS, TFT, OLED, POLED и AMOLED? Разбор типов дисплеев!
Термин «In-plane switching» происходит от главного отличия IPS-матриц: кристаллы в ячейках матрицы всегда находятся в одной плоскости и расположены параллельно плоскости матрицы. Когда к ячейке прикладывается электрическое напряжение, кристаллы начинают свое движение, поворачиваясь вдоль вертикальной оси почти на 90 градусов.
Любопытной особенностью IPS-матриц является организация подсветки: матрица пропускает свет, исходящий от размещающихся под ней светодиодов, в активном состоянии, но полностью перекрывает ему путь в пассивном состоянии (когда электрическое напряжение отсутствует). Таким образом, если транзистор, управляющий работой ячейки, выходит из строя, соответствующий пиксель навсегда останется черным, тогда как в TN-матрицах «битые» пиксели иногда ярко светятся и хорошо заметны на темном фоне.
IPS-матрицы отличаются от TN-панелей не только структурой кристаллов, но и расположением электродов: оба электрода (компоненты транзисторов) находятся на одной подложке и занимают больше места, чем электроды в TN-матрицах. Это приводит к некоторому снижению контраста и яркости матрицы. Однако со времени появления IPS-технологии разными компаниями были разработано множество более совершенных видов IPS-матриц, каждый из которых в чем-то превосходит оригинальные панели.
Super-IPS (S-IPS)
IPS-технология дала начало ее усовершенствованной версии Super-IPS наряду с нишевыми, редко встречающимися на массовом рынке продуктами вроде Dual Domain IPS (DD-IPS) и Advanced Coplanar Electrode (ACE). Производство дисплеев на базе последнего варианта (ACE) было заморожено Samsung, видимо, в силу перехода компании на более перспективную технологию PLS. DD-IPS же от компании IDTech дороги в производстве, хотя и заложены в основу некоторых дисплеев с высоким разрешением.
Структура пикселей в S-IPS матрице
Компании NEC принадлежат бренды A-SFT, A-AFT, SA-SFT и SA-AFT, но на деле эти технологии можно рассматривать как слегка улучшенные варианты Super-IPS. Но основная доля производства Super-IPS панелей приходится на компанию LG.Display, которая приложила много усилий для развития IPS.
В частности, для того чтобы устранить мелкие искажения при цветопередаче, связанные с тем, что кристаллы фактически не разворачиваются на 90 градусов, оригинальную матрицу IPS «разделили» на чередующиеся области, в которых линии ориентации кристаллов перекрещиваются и взаимно нивелируют «ошибки» каждой из двух соседних областей. Эта технологию назвали «мульти-доменным» выравниванием жидких кристаллов (“multi-domain” liquid crystal alignment).
Панели на основе S-IPS получили широкое признание, и на массовый рынок поступили в продажу не слишком дорогие дисплеи с диагональю от 19″ до 30″. Со временем инженерам удалось решить и проблему, касающуюся неудовлетворительно высокого значения времени отклика для первых IPS-матриц: изначально переход от черного к белому и затем обратно к черному (Black-White-Black, BWB) занимал 60 миллисекунд, а от серого к серому (Grey-to-Grey, GTG) – и того более.
Скорость реакции значительно повысили, снизив время отклика до 16 миллисекунд. А некоторые из старых S-IPS даже осуществляли переход от черного цвета к серому за время, сопоставимое с тем, что требуется TN-панелям (без включенного режима overdrive). В современных Super-IPS дисплеях, так же, как и в TN-панелях, присутствует режим «разгона» — так называемый Overdrive Mode, который в спецификациях LG.Display упоминается как ODC — Over Driving Circuitry. Теперь по времени отклика S-IPS панели практически догнали своих TN-соперников.
S-IPS в сравнении с H-IPS
Хорошая цветопередача и большие углы обзора всегда были сильными сторонами технологии IPS. Точность передачи цвета даже в не самых дорогих моделях мониторов позволяет сравнивать их с полупрофессиональными дисплеями на базе VA-матриц (VA означает Vertical Alignment, то есть «вертикальное выравнивание» жидких кристаллов, характерное для MVA- и PVA-матриц). Помимо этого, IPS-панели лишены эффекта «контрастного сдвига», заключающегося в изменении контраста, которое проявляет себя, когда взгляд пользователя, сидящего прямо напротив центра дисплея, смещается к сторонам экрана.
В последние годы многие модели мониторов и ноутбуков, предназначенные для профессиональной работы с изображениями – главным образом, фотографиями – начали оснащать IPS-матрицами. Впрочем, S-IPS панели передают черный цвет слегка неточно, что заметно, если посмотреть на дисплей под большим углом: в таком случае черный цвет «уходит» в сторону фиолетовых оттенков. Для устранения этого эффекта в некоторых мониторах применяют поляризатор A-TW («Advanced True Wide»).
А вот с абсолютными значениями контраста у IPS-панелей наблюдаются некоторые, скажем так, затруднения. S-IPS матрицы, особенно в ранних типах дисплеев, не были способны воспроизводить черный цвет таким, каким он есть на самом деле: вместо глубокого черного пользователь видел темно-серый цвет. Эта «погрешность» хорошо различима в условиях недостаточной внешней освещенности. Однако в современных S-IPS матрицах значения контрастности заметно увеличились, хотя и до сих пор являются предметом спора при сопоставлении S-IPS панелей с VA-дисплеями.
Enhanced Super-IPS и Advanced Super-IPS
Иногда в описании дисплея можно увидеть обозначения E-IPS и AS-IPS. E-IPS – это «улучшенная» версия технологии Super-IPS, предложенная LG.Display. Улучшения касаются скорости реакции S-IPS панелей, а также их контрастности. Применив технологию компенсации времени отклика ODC (Overdrive Circuitry, «овердрайв») и добавив функцию динамической контрастности (автоматическую регулировку контраста в зависимости от характеристик быстро меняющегося изображения), LG.Display присвоила новому подвиду своих S-IPS дисплеев обозначение «Enhanced IPS» — которое не стоит путать с e-IPS, еще одним вариантом IPS-матриц.
Время отклика пикселей, необходимое для перехода от серого к серому (G2G) сократилось до 5 миллисекунд, а динамическая контрастность составила 1600:1. Углы обзора в E-IPS матрицах по вертикали и по горизонтали сохранили свои значения (178 градусов), при этом при взгляде на дисплей под углом смещение цветовых оттенков едва заметно. Что касается AS-IPS матриц, это бренд, использовавшийся NEC для собственного варианта «продвинутой» S-IPS.
Horizontal-IPS, H-IPS
Продолжая улучшать IPS-технологию, LG.Display внесли изменения в структуру пикселей, в результате чего появилась модификация «Horizontal-IPS», H-IPS. Чтобы снизить утечку светового излучения, уменьшили ширину электродов, что в итоге привело к изменению и самого вида пикселя. В H-IPS матрицах пиксели состоят из ровных вытянутых вертикальных субпикселей – в отличие от S-IPS панелей, в которых субпиксели имеют стреловидную форму. Почему же технология названа «горизонтальной»? По-видимому, все дело в почти горизонтальной ориентации элементов, из которых складываются субпиксели – в S-IPS эти элементы развернуты в сторону вертикальной оси.
Структура пикселей в H-IPS матрице
На практике H-IPS панели обладают слегка увеличенным значением контрастности и более естественной цветопередачей. При взгляде на H-IPS матрицу под большими углами черный цвет переходит не в фиолетовый, а в белое свечение. В некоторых дисплеях на H-IPS матрицах также применяется поляризатор A-TW для придания черному цвету глубины на больших углах обзора.
Внимательное изучение множества современных IPS-панелей показывает, что H-IPS технология сейчас широко распространена даже не смотря на то, что не все производители в спецификациях дисплеев прямо отмечают ее использование. Так, LG.Display не указывает разновидность IPS-версий для моделей, основанных на H-IPS, тогда как NEC ссылается на нее в описаниях к своим матрицам.
e-IPS
К концу 2000-х LG.Display представила новое поколение H-IPS панелей, получивших обозначение e-IPS. Разработчики этой версии IPS упростили структуру субпикселей и повысили прозрачность матрицы. Таким образом им удалось снизить стоимость производства матриц, чтобы успешнее конкурировать с панелями на основе TN Film и cPVA от Samsung.
Поскольку прозрачность матрицы увеличена, требуется меньше света для достижения определенных показателей яркости, а значит и установка менее мощной подсветки. Себестоимость e-IPS панелей оказалась значительно меньше по сравнению с S-/H-IPS дисплеями.
Впрочем, e-IPS матрицы обладают не только меньшей стоимостью, но и более скромными углами обзора, сильнее теряя контраст и глубину черного цвета при взгляде под большими углами. Некоторые e-IPS матрицы имеют меньшую битность субпикселей в сравнении с VA-дисплеями: 6bit против 8 bit, поэтому для достижения передачи полного цветового спектра в них задействована интерполяция, что слегка сказывается на «сочности» изображения, или технология AFRC. Похоже, что «e» в e-IPS стоит читать как «economic», то есть e-IPS – это экономичные панели.
UH-IPS/H2-IPS и S-IPS II
UH-IPS и H2-IPS матрицы представляют собой, в сущности, обновленные версии H-IPS панелей. Заявляется, что данные технологии позволяют снизить потребление энергии для подсветки дисплеев. В частности, в спецификациях к UH-IPS панелям указывается, что в новых матрицах уменьшено расстояние между субпикселями. Это и позволяет UH-IPS дисплеям демонстрировать большую яркость и контрастность одновременно с высокой энерго-эффективностью.
Некоторые производители дисплеев, создавая новое поколение IPS-мониторов, пошли еще дальше, увеличивая значения яркости и контраста и снижая энергопотребление по сравнению c UH-IPS. В S-IPS матрицах «второго поколения» вернулись к стреловидной структуре пикселей – вместо применявшейся в H-IPS вертикальной схемы.
Performance IPS (p-IPS)
NEC Display Solutions, совершенствуя H-IPS технологию, вывели на рынок новый тип IPS-дисплеев – серию Performance IPS-моделей с диагоналями от 24 до 30 дюймов. Новая линейка мониторов оказалась примечательна повышенной битностью цветовых каналов: 10-битные панели отображают палитру, состоящую из миллиарда цветов («1.07 billion colour palette»). Правда, высокая битность достигается путем применения технологии AFRC (Advanced Frame-rate Control, продвинутое управление количеством кадров в секудну): так 16.7 миллиона цветов, стандартные для всех 8-битных дисплеев, «превращаются» в миллиард.
Технология Samsung PLS
Samsung в своих многочисленных продуктах, как известно, использует разные типы матриц: здесь встречаются и традиционные TN-панели, и более дорогие PVA-матрицы. Однако в последнее время у всех на слуху эксклюзивная технология от Samsung – PLS/Super PLS.PLS, или Plane-to-Line Switching, стала ответом компании на распространение доступных дисплеев на основе e-IPS матриц, которые стремительно осваивались производителями дисплеев вроде Dell и LG.Display.
Дисплеи планшетов Samsung Galaxy Tab основаны на эксклюзивной технологии Samsung PLS
PLS вызвала необычайное удивление у специалистов, поскольку не являлась усовершенствованной версией проприетарной технологии Samsung, основанной на PVA. Вопреки ожиданиям, в PLS матрицах угадывались черты IPS-панелей, которые, как мы теперь знаем, были главным направлением производства дисплеев у конкурента Samsung – компании LG. PLS-матрицы первоначально устанавливались в планшеты и смартфоны, однако позже Samsung решила использовать эту технологию в мониторах SyncMaster восьмой серии (в частности, SyncMaster SA880).
Субпиксели в e-IPS матрице
Если посмотреть на увеличенные изображения e-IPS и PLS панелей, в первую очередь, можно выделить визуальное сходство субпикселей, образующих пиксели каждого из этих двух типов матриц. Субпиксели в e-IPS матрице имеют вытянутую, прямоугольную форму и сохраняют почти цельную структуру при регулировке яркости.
Субпиксели в PVA-матрице
В PVA-матрицах при снижении уровня яркости субпиксели как бы «распадаются» на две части — в e-IPS же заметна лишь тонкая разделительная линия посередине. Почти так же выглядят и субпиксели в PLS-матрице, однако они не сегментированы по диагонали и расположены ближе друг к другу – похоже, что именно уменьшение зазоров между субпикселями в PLS-матрицах позволило увеличить максимальную яркость PLS-дисплеев.
Субпиксели в PLS-матрице
PLS-матрицы унаследовали от оригинальной IPS-технологии высокие углы обзора – до 178 градусов как по горизонтали, так и по вертикали. При этом черный цвет при взгляде на дисплей под большими углами выглядит более естественным, другими словами PLS-матрице удается лучше передать его глубину по сравнению с e-IPS. Цветопередача в целом соответствует возможностям lPS-матриц, а для тех дисплеев, в которых присутствует так называемая «белая» LED-подсветка (white-LED backlight), Samsung даже заявляет полных охват цветового пространства sRGB.
Кроме того, PLS-матрицы подобно своим IPS-«сестрам» лишены эффекта «тонального сдвига», то есть искажения цветов, проявляющегося при взгляде на цветное изображение под большими углами. PSL-матрицы привлекают к себе внимание и более высокой – если проводить сравнение с IPS-панелями –яркостью.
PLS-дисплеи (как в планшете Galaxy Tab слева) отличаются более высоким значением яркости
Однако если в «обычных» IPS-дисплеев высокие значения яркости и широкие углы обзора – вещи трудно совместимые, то PLS, как видится, сочетает в себе оба этих свойства, представляясь комбинацией возможностей «S-IPS» и ее «яркого», но хуже передающего цвета под углом варианта — «I-IPS». К тому же, время отклика PLS-панелей не отличается значительным образом от скорости реакции e-IPS матриц с «овердрайвом» (RTC).
Тем не менее, PLS-матрицы имеют и недостатки. Если контрастность PVA-дисплеев обычно находится на уровне значения 1000:1, то в случае с PLS оно не превышает 600:1 – контрастность IPS-матриц в зависимости от их типа варьируется от 600:1 до 700:1. Низкая контрастность выливается в обилие различимого в темноте «подсвечивания» темных областей изображения, со смещением черного цвета в сторону темно-серых оттенков.
Источник: www.fastestpc.ru
Экраны и типы матриц современных смартфонов и планшетов: какой выбрать?
В году так 2007, покупая очередной мобильный телефон, мы оценивали его дизайн, редко обращая внимание на функциональные возможности и тем более экран – цветной, не слишком маленький, ну и здорово. Сегодня мобильные устройства едва можно отличить от друг от друга, но самой важной характеристикой для многих остается экран и не только его размер диагонали, но и тип матрицы. Давайте посмотрим, что скрывается за терминами TFT, TN, IPS, PLS, и как выбрать экран смартфона с необходимыми характеристиками.
Типы матриц
В настоящее время в современных мобильных устройствах применяют три технологии производства матриц основанных:
- на жидких кристаллах (LCD): TN+film и IPS;
- на органических светодиодах (OLED) – AMOLED.
Начнем с TFT (thin-film transistor), которая представляет собой тонкоплёночные транзисторы, использующиеся для управления работой каждого субпикселя. Данная технология применяется во всех указанных выше типах экранов, включая AMOLED, поэтому сравнивать TFT и IPS не всегда правильно. В подавляющем большинстве TFT-матриц применяется аморфный кремний, но также стали появляться TFT на поликристаллическом кремнии (LTPS-TFT), преимущество которой заключается в уменьшенном энергопотреблении и большей плотности пикселей (более 500 ppi).
TN+film (TN) – наиболее простая и дешевая матрица, используемая в мобильных устройствах c малыми углами обзора, слабой контрастностью и низкой точностью цветопередачи. Данный тип матриц устанавливается в самые дешёвые смартфоны.
IPS (или SFT) – самый распространенный тип матрицы в современных мобильных гаджетах, обладающий широкими углами обзора (до 180 градусов), реалистичной цветопередачей и обеспечивают возможность создания дисплеев с высокой плотностью пикселей. У данного вида матриц несколько видов, рассмотрим самые востребованные:
- AH-IPS – от компании LG;
- PLS – от компании Samsung.
Говорить о преимуществах относительно друг друга бессмысленно, так как матрицы идентичны по свойствам и характеристикам. Отличить дешёвую IPS-матрицу можно на глаз по характерным свойствам:
- выцветание картинки при наклонах экрана;
- низкая точность цветопередачи: изображение с перенасыщенными цветами, либо с очень тусклыми.
От LCD особняком стоят матрицы, созданные на основе органических светодиодов –OLED. В мобильных устройствах применяется разновидность технологии OLED — матрица AMOLED, демонстрирующая самый глубокий чёрный цвет, низкое энергопотребление и слишком насыщенные цвета. Кстати, срок работы AMOLED ограничен, но современные органические светодиоды рассчитаны минимум на три года беспрерывной работы.
Вывод
Наиболее качественное и яркое изображение на данный момент обеспечивают AMOLED-матрицы, но если вы смотрите в сторону смартфона не от Samsung, то рекомендую IPS-экран. Мобильные устройства с матрицей TN+film попросту устарели технологически. Рекомендую не покупать смартфон с экраном AMOLED, у которого плотность пикселей менее 300 ppi, это связано проблематикой рисунка субпикселей в данном типе матриц.
Перспективный тип матрицы
QLED – самые перспективные дисплеи, основанные на технологии квантовых точек. Квантовая точка представляет собой микроскопический кусочек полупроводника, в котором важную роль играют квантовые эффекты. QLED матрицы в перспективе будут иметь лучшую цветопередачу, контрастность, более высокую яркость и низкое энергопотребление.
Источник: mediapure.ru
Жидкокристаллические дисплеи. История, принципы работы, преимущества и недостатки
Прежде всего, необходимо уточнить, что TFT (технология тонкопленочных транзисторов) используется в настоящее время во всех экранах. Строго говоря, и PLS и IPS работают по TFT-технологии на транзисторах из аморфного кремния. Электрический ток, попадая на жидкие кристаллы, задает яркость, цвет и угол обзора каждого пикселя.
TN или TN+film — первый и ныне устаревший тип TFT матрицы, обладавший очень небольшим углом обзора и недостаточной яркостью (контрастностью). TN экраны недостаточно «спокойно» реагировали и на нажатие, покрываясь некоторой рябью или волной, что недопустимо для экранов современных мобильных устройств.
PLS (Plane-to-Line Switching) и IPS (Super TFT) — современные и более совершенные матрицы, используемые в мониторах, экранах телевизоров и мобильных устройств.
TN панели
Панели TN были первыми серийными мониторами с плоским экраном. Они помогли сделать громоздкие электронно-лучевые трубки (ЭЛТ) делом прошлого и до сих пор производятся в больших количествах сегодня.
Хотя новые панели всегда лучше, чем их предшественники, технология отображения TN по-прежнему имеет некоторые заметные недостатки. Одним из них является его ограниченные углы обзора, особенно на вертикальной оси. Нет ничего необычного в том, что цвета панели TN полностью инвертируются, если смотреть на нее под большим углом.
Его цветопередача также не так сильна. Большинство панелей TN не способны отображать 24-битный истинный цвет и вместо этого полагаются на интерполяцию для имитации правильных оттенков. Это может привести к появлению видимых цветовых полос и ухудшению контрастности по сравнению с панелями IPS или VA.
Цветовая гамма (диапазон цветов, который может отображать монитор) — это еще одна область, в которой панели TN часто вызывают нарекания. Только высокоуровневые TN могут рассматриваться как широкие, то есть они отображают весь спектр sRGB. Однако многие из них не достигают этой цели, что делает их непригодными для редактирования фотографий или любой другой работы, для которой важна точность цвета.
Итак, зачем кому-то покупать панель TN? Для начала, они дешевые. Их производство не требует больших затрат, поэтому их часто используют в наиболее экономичных вариантах. Если Вы не цените цветопередачу панель TN может подойти для Вашего офиса или учебы.
Панели TN также имеют самую низкую задержку ввода — обычно около одной миллисекунды. Они также могут работать с высокой частотой обновления до 240 Гц. Это делает их привлекательным вариантом для соревновательных многопользовательских игр, особенно киберспорта, где каждая секунда имеет значение.
Если Вы предпочитаете низкую задержку цветопередаче или углам обзора, Вам может подойти панель TN.
Технология от Hitachi
Базовая технология Super TFT была разработана в 1996 году и не имела недостатков, свойственных TN:
- IPS обладает устойчивостью к нажатию
- Гораздо более «лояльна» к человеческому глазу и не так портит зрение
- Намного более яркая и контрастная, с лучшим углом обзора
Впоследствии были разработаны несколько разновидностей IPS:
- S-IPS — наследница базовой матрицы, с увеличенной скоростью отклика
- AS-IPS
- H-IPS
- IPS-Pro — последовательно внедряемые технологии со все более улучшенной яркостью, контрастностью и углом обзора
- AFFS — матрица со значительно уменьшенным расстоянием между пикселями. Используется преимущественно в планшетах
- e-IPS — удешевленная матрица со сниженным энергопотреблением
- P-IPS — матрица с глубиной цвета более 30 бит. Экраны на ее основе отображают более миллиарда цветов
- AH-IPS — обеспечивает одновременно высокую яркость, контрастность, угол обзора и экономию электроэнергии.
Да будет свет
LED
Технология подсветки LCD-экранов LED представлена несколькими видами. Они различаются цветом, расположением светодиодов на ЖК-панели и способом регуляции свечения.
- Тип подсветки, состоящий только из белых светодиодов, называется WLED. Он относительно прост по своей структуре, но имеет ограниченный цветовой охват.
- Подсветка RGB LED, построенная на красных, зеленых и синих светодиодах, охватывает больший диапазон цветов, нежели WLED, но склонна к деградации (диоды разных цветов выгорают с различной скоростью), тяжеловесна и обременительна по цене.
- GB-R LED – следующий шаг в развитии LCD, где вместо белого светодиода используется объединенный зеленый + синий, покрытый красным люминофором (самосветящимся пигментом). Такое решение позволило охватить 99% палитры RGB и избавиться от недостатков RGB LED. Технология GB-R LED используется в матрицах AH-IPS и PLS.
- RB-G LED – вариация подсветки предыдущего типа. Вместо сине-зеленых светодиодов здесь стоят красно-синие, покрытые зеленым люминофором.
Это интересно: Похоже, но не одно и то же: сильные и слабые стороны интерфейсов HDMI и DisplayPort
На основе WLED разработан еще один стандарт LCD-дисплеев – QDEF, где вместо белых диодов используется синие, а красный и зеленый цвета образует покрытие из квантовых точек (кристаллов, светящихся под действием электричества), нанесенное на лист пластика. QDEF-дисплеи воспроизводят до 60% оттенков, различимых человеческим глазом, что в разы выше, чем позволяет добиться WLED. А по затратам энергии и цене экраны WLED и QDEF примерно равнозначны.
QDEF также является одной из версий технологии QLED (Quantum-dot Light Emitting Diode), которая основана на квантово-точечных светодиодах.
По расположению светоизлучающих элементов на ЖК-панели различают следующие виды LED-подсветки:
- Edge LED – светодиоды расположены линейно по периметру экрана. Это экономично, однако не позволяет добиться равномерности освещения и приемлемого уровня контрастности.
- Direct LED – массив светодиодов распределен по всей площади дисплея. Такая технология дает более реалистичную картинку, но панели этого типа потребляют много энергии и имеют значительную толщину, что затрудняет их установку на сверхтонкие телевизоры.
- Боковая подсветка – диоды расположены только по краям экрана, а освещение обеспечивают подключенные к ним световоды. Этот тип подсветки считается оптимальным, так как дает равномерность, сопоставимую с Direct LED, и при этом лишен его недостатков.
Каждый из трех типов подсветки делятся еще на 2 – с поддержкой локального затемнения (Local Dimming) и динамической контрастности (DCR) либо без поддержки. Изображение экранов с Local Dimming и DCR выглядит реалистичнее.
OLED и AMOLED
Понятие OLED хоть и созвучно с LED, но не имеет с ним практически ничего общего. OLED (Organic Light Emitting Diode) – это технология изготовления дисплеев, основанная на свойствах органических полупроводников – элементов, способных излучать свет под действием тока. Каждый субпиксель OLED-экрана – это отдельный органический светодиод. В отличие от ЖК, панели OLED не нуждаются в подсветке, поскольку светятся каждой своей точкой.
Другие свойства и особенности OLED-дисплеев в сравнении с LED:
- Малая толщина и вес за счет уменьшения количества слоев.
- Неограниченные углы обзора.
- Равномерное освещение.
- Минимальное время отклика.
- Гибкость.
- Значительно большие яркость, контрастность и насыщенность цветов.
- Низкая чувствительность к внешним температурам, но высокая к влаге.
- Короткий срок службы и склонность к деградации: диоды синего цвета выгорают в 3 раза быстрее, чем красного и почти в 10 раз быстрее, чем зеленого.
- Зависимость исчерпания ресурса от яркости экрана – чем она выше, тем быстрее наступает выцветание.
- Чувствительность к механическим повреждениям. Незначительный дефект приводит к полному выходу экрана из строя.
- Мерцание за счет применения ШИМ (широтно-импульсной модуляции) для управления яркостью. Экраны OLED используют ШИМ опционально.
- Высокая стоимость.
Это интересно: Как войти в БИОС (BIOS)?
AMOLED (Active Matrix Organic Light Emitting Diode) – это активная матрица на органических светодиодах, сочетание технологий TFT и OLED, где последняя применяется в качестве подсветки. Соответственно, экраны AMOLED обладают свойствами того и другого.
Технология AMOLED нашла широкое применение в производстве сенсорных дисплеев для мобильных устройств. И не только она, но и ветви ее развития – Super AMOLED и Super AMOLED плюс.
Отличие просто AMOLED от Super – заключается в отсутствии у второго воздушной прослойки между поверхностями тачскрина и матрицы, что увеличивает четкость картинки. А от Super AMOLED плюс – в количестве и расположении субпикселей (цветных составляющих пикселя). В последнем их на 50% больше и они размещены плотнее.
AMOLED vs IPS
Закономерно возникает вопрос: какой дисплей лучше – AMOLED или IPS? Вы уже знаете, что представляет собой тот и другой, поэтому давайте для наглядности сопоставим их характеристики в таблице.
IPS | AMOLED | |
Общая характеристика изображения | Качество от среднего до высокого в зависимости от типа и поколения матрицы. | Качество, как правило, высокое. |
Достоинства изображения | Естественная цветопередача. | Высокая яркость и контраст, глубокий черный цвет, равномерное освещение. |
Недостатки изображения | Относительно небольшая глубина черного цвета, особенно при взгляде под углом, немаксимальная контрастность, неравномерная подсветка. | Неестественно перенасыщенные цвета. Фиолетовый оттенок при снижении яркости либо мерцание из-за ШИМ. |
Время отклика экрана | От 4 до 10 мс и выше. | Мгновенный отклик. |
Потребление энергии | Не зависит от преобладания на экране светлых или темных тонов. | Зависит от яркости свечения. Чем она выше, тем больше затраты энергии. При преобладании белого потребляет больше энергии, чем IPS. |
Срок службы | 5-10 лет и более. | После 15 000 часов эксплуатации могут появиться признаки деградации. Для увеличения ресурса синих светодиодов рекомендуется снижать яркость. |
Надежность | Высокая. | Средняя и низкая. Не любит неаккуратного обращения. |
Другие особенности | Негибкая, относительно толстая матрица. | Тонкая, гибкая матрица. Может использоваться для изготовления изогнутых экранов и сверхтонких мобильных устройств. |
Цена | От низкой ($10) до высокой. | От средней до очень высокой. |
Очевидно, что обе технологии имеют как достоинства, так и недостатки. Назвать одну из них явным лидером затруднительно, тем более что перспективы развития и совершенствования есть у той и другой. Как они покажут себя в дальнейшем, поживем и увидим. А пока выбирайте то, к чему больше лежит душа – останетесь в выигрыше в любом случае.
Технология от Samsung
Представленная широкой публике в 2010 году, матрица PLS является прямой «родственницей» IPS, что признают и сами корейские производители. Тем не менее, PLS имеет целый ряд отличий от «старшей сестры» и заслуживает отдельного описания.
Plane To Line Switching стала более дешевой альтернативой матрицы от Hitachi и позволила Samsung не обращаться всякий раз к монополистам, а создавать собственный продукт по собственной, более экономичной, технологии.
Работающая на все тех же жидких кристаллах, PLS использует принцип линейного изменения молекул, становящихся плоскими. Все секреты технологии Samsung не открывает и сегодня.
Экраны PLS обладают:
- Высокой плотностью
- Не искаженным изображением
- Широким цветовым диапазоном
- Высокой контрастностью
- Максимально возможным углом обзора
- Высокой скоростью отклика
PLS или IPS
Для того, чтобы увидеть разницу между двумя матрицами, нужно поставить рядом два дисплея: PLS и IPS. Только в этом случае могут (не всегда) быть заметны некоторые отличия:
- PLS-дисплей выдает несколько более яркую картинку, нежели IPS
- На IPS отсутствует столь неприятное, хоть и не всегда заметное глазу, мерцание.
Но заявлять, что PLS матрица превосходит IPS по всем пунктам было бы ошибкой прежде всего потому, что качество изображения зависит не только от матрицы, но и от множество других факторов.
Правильнее будет привести доводы в пользу каждой из технологий.
Плюсы IPS
Экраны на базе IPS матрицы относительно недороги, обладают высокой скоростью отклика и являются, по сути, универсальными.
Источник: inodroid.ru