Принципиальная схема простого драйвера для светодиодной лампы, питающейся о 220В, а также небольшое дополнение в виде таймера. Сейчас все моднее и моднее светодиодные лампы. И действительно есть преимущества.
В отличие от ЛДС совстроенным «балластом» они не только меньше жрут, но и, что особо важно, дольше живут. Хотя не все. Я бы разделил имеющиеся в продаже «светодиодки» на две группы «настоящие» и «поддельные». «Настоящие», на мой непросвещенный взгляд, это те, что со встроенным импульсным стабилизированным источником питания светодиодов, ну такие, как например, на рис.1.
А к «поддельным», опять же, на мой непросвещенный взгляд, отнесу такие, как на рис.2. То есть, простейшая и весьма уязвимая схема выпрямителя с конденсатором. К сожалению, по моему личному опыту, такие светодиодные лампы долго не живут. Хотя и починить их легче, — это признаю.
И что интересно, «поддельные» обычно спаяны на плате для «настоящих», но только используя некоторые дорожки, основная же часть платы пустая. В общем, «китайский колхоз».
7# Устройство и принцип работы блоков питания ЖК ТВ. LED драйвер.
Рис. 1. Схема импульсного драйвера для светодиодной лампы, выполнена на микросхеме BP2832A.
Рис. 2. Простейшая схема выпрямителя с конденсатором для питания светодиодной лампы.
«Настоящие» лампы интересны тем, что ими относительно легко управлять, потому что есть импульсный источник питания на микросхеме, которую можно блокировать.
В частности, в схеме на рисунке 1, можно выключить лампу, если замкнуть вывод 4 микросхемы ВР2832А на общий минус. При этом перестает работать генератор микросхемы, и схема перестает функционировать, светодиоды гаснут.
Принципиальная схема
На рисунке 3 показана схема с добавленной схемой таймера на 20 минут, сделанного на основе микросхемы CD4060. Этот таймер ограничивает время работы лампы. То есть, через 20 минут после включения лампа гаснет.
Чтобы её снова включить нужно сначала выключить питание лампы (выключить обычным выключателем) на несколько секунд, а потом снова включить. Счетчик D1 питается напряжением 12V.
Это напряжение получается при помощи параметрического стабилизатора, состоящего из резистора R2 и стабилитрона VD1 (на схеме пронумерованы только детали добавленные к схеме светодиодной лампы). Конденсатор С2 дополнительно сглаживает пульсации. В момент включения в электросеть появляется напряжение на С2, которым питается микросхема D1.
Это же напряжение, с помощью цепочки C1-R1 формирует импульс обнуления счетчика микросхемы D1, который поступает на её вывод 12. После этого на всех выходах счетчика D1, включая и выход D14, появляются логические нули. Нулевое напряжение поступает на затвор VT1. Он закрыт. И никак не влияет на работу схемы светодиодной лампы.
Поэтому светодиодная лампа горит.
Рис. 3. Схема сетевого импульсного драйвера для питания светодиодной лампы + таймер.
Так продолжается пока идет отсчет времени. Частота импульсов задающего генератора цепью C3-R3 установлена таким образом, что логическая единица на выводе 3 D1 появляется через 20 минут после обнуления счетчика. Как только единица появляется на выводе 3 D1 происходит две вещи.
Во-первых, единица через диод VD2 поступает на вход первого элемента мультивибратора микросхемы и срывает его генерацию, поэтому счетчик останавливается в этом состоянии и далее не считает. Во-вторых, единица с вывода 3 D1 поступает на затвор полевого транзистора VT1, который открывается и замыкает вывод 4 микросхемы ВР2832А на общий минус питания.
Это приводит к блокировке генератора этой микросхемы и она перестает работать. Питание на светодиоды не поступает и лампа гаснет. Чтобы снова включить лампу, нужно её сначала отключить от электросети (выключить) на некоторое время около 2-3 секунд или более.
При этом происходит разрядка конденсаторов, имеющихся в схеме. Затем, при включении питания появляется напряжение на С2, которым питается микросхема D1. Это же напряжение, с помощью цепочки C1-R1 формирует импульс обнуления счетчика микросхемы D1, который поступает на её вывод 12.
После этого на всех выходах счетчика D1, включая и выход D14, появляются логические нули. Нулевое напряжение поступает на затвор VT1. Он закрыт. И никак не влияет на работу схемы светодиодной лампы. Поэтому светодиодная лампа горит.
Таким образом, схема таймера запускается при включении лампы и ограничивает время горения до 20 минут. Но это время не обязательно должно быть именно 20 минут. Изменив емкость С3 и сопротивление R3 можно в очень широких пределах регулировать время горения лампы, от нескольких секунд до нескольких дней.
Послеслово
Данную схему таймера можно применить и к другой схеме «настоящей» светодиодной лампы, то есть, с импульсным генератором, потому что всегда у микросхемы — генератора есть тот самый вывод, подав логический ноль на который, можно её заблокировать. Нужно только его найти. Но на это есть справочные данные, так называемые, «дата-шиты».
Источник: radiostorage.net
Самодельный драйвер для светодиодов от сети 220в
Изготовление драйвера светодиодов на 220В своими руками
Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.
В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.
Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
- Делитель напряжения на ёмкостном сопротивлении;
- диодный мост;
- каскад стабилизации напряжения.
Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).
При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.
Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.
Третий каскад – сглаживающий стабилизирующий фильтр.
Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.
В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.
Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.
Как подобрать драйвер для светодиодов
На рынке предлагается широкий выбор драйверов для светодиодов. Многие стабилизаторы не соответствуют указанным параметрам, часто этим грешат китайские производители. Недорогие драйверы «подозрительных» производителей могут занижать мощность и вместо обозначенных 50 Вт фактически выдавать 40 Вт. К тому же у них непродолжительное время работы. Перед покупкой следует отдавать предпочтение брендовым производителям с большим количеством часов работы.
Расчет выбора драйверов для светодиодов
Перед приобретением устройства желательно определиться, какие параметры требуются для драйвера. Взять для примера 6 светодиодов током 0,3 А с падением напряжения 12В. Выбор драйвера определяется схемой соединения светодиодов:
- Параллельная схема – потребуется преобразователь на 6 В и ток 0,6 А. Напряжения нужно вдвое меньше, но тока – вдвое больше. Минус схемы: токи в отдельной ветке различны из-за неодинаковых параметров светодиодов, поэтому одна из веток будет светиться интенсивней, чем вторая.
- Последовательная схема – потребуется драйвер на 12 В и ток 0,3 А. Цепь одна с одинаковым током на всем протяжении. Диоды излучают свет все с одинаковой яркостью. Минус схемы – при большом количестве диодов потребуется преобразователь с очень большим напряжением.
- Последовательно-параллельная схема – потребуется driver с такими же характеристиками, как при параллельной схеме, но диоды будут светить с одинаковой интенсивностью. Минус схемы – в первый момент подачи питания в одном из диодов (из-за различных характеристик) может оказаться ток, превышающий номинальное значение в два раза. Светодиоды выдерживают непродолжительные скачки тока, но все же эта схема менее предпочтительна. Не допускается соединять более двух диодов параллельно, так как скачок тока будет значительным и может вывести из строя осветительный элемент.
Во всех трех случаях мощность драйвера одинакова, составляет 3,6 Вт (Ватт), рассчитывается по формуле:
где I – сила тока (Ампер), U – напряжение (Вольт).
Мощность преобразователя не зависит от схемы соединения светодиодов, а зависит лишь от их количества.
Приобрести данный товар можно в:
Рекомендуется тщательно подбирать драйверы для светодиодов, от этого зависит срок их службы.
Схема питания светодиодов на основе конденсаторного делителя
К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация.
Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.
В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.
Теория питания светодиодных ламп от 220В
Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.
Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.
Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.
Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.
Источник: elquanta.ru
Обзор LED-драйверов для светодиодных ламп широкого потребления
Рассмотрена конструкция и схемотехника LED-драйверов, показаны решения, позволяющие получать высокие результаты по эффективности, коэффициенту мощности, уровню гармонических составляющих входного тока и стабильности тока LED в диапазоне входных напряжений 90–255 В.
Введение
Популярность светодиодных (LED) ламп обусловлена рядом объективных факторов: продолжительным сроком эксплуатации, крайне низким уровнем энергопотребления, высокой светоотдачей, отсутствием пульсаций светового потока, нечувствительностью к нестабильной электросети и к частым включениям-выключениям, способностью уверенно работать в условиях повышенной влажности и серьезных морозов, возможностью использования в модульных осветительных системах, где из-за выгорания одного или нескольких светодиодов немедленной замены LED-лампы не потребуется в силу того, что общая светоотдача системы изменится незначительно.
Светодиодные лампы обычно состоят из светодиодного модуля и платы источника тока (LED-драйвера), размещенных в корпусе-радиаторе. LED-драйвер коммутирует светодиодный модуль с сетью переменного тока и представляет собой импульсный преобразователь напряжения с интегрирующим элементом, которым является дроссель.
Основными параметрами, характеризующими светодиодные драйверы, являются: эффективность (КПД); коэффициент мощности; зависимость выходного тока от входного напряжения; уровень гармонических составляющих входного тока (соответствие ГОСТ Р 51317.3.2-2006); количество компонентов, влияющее на стоимость конечного изделия. В последнее время разработчики LED—ламп все больше внимания уделяют еще и таким параметрам, как долговечность и надежность, поскольку они делают экономический эффект от использования светодиодных источников света еще более привлекательным, несмотря на то, что цена таких ламп выше. Для этой цели используются качественные комплектующие, особенно LED—диоды и электролитические конденсаторы, и там, где возможно, последние заменяются на керамические. Использование схемотехнических решений, исключающих электролитические конденсаторы, позволило бы увеличить срок службы драйвера до 80 000 ч и более.
В настоящее время на рынке появилось много светодиодных ламп для внутреннего освещения с noname светодиодными драйверами производства китайских фирм. Как правило, в них используются LED-драйверы как с гальванической развязкой от сети переменного тока, так и без развязки, т. е. изолированные и неизолированные. В данной статье рассмотрены схемотехника и параметры этих драйверов, показаны их недостатки и преимущества, предложен вариант реализации LED-драйвера ООО НПП «Микроника».
Неизолированные noname светодиодные драйверы
Типовая схема неизолированных светодиодных драйверов содержит фильтр радиопомех, блок выпрямителя, схему управления со встроенным активным либо внешним пассивным корректором мощности, блок ключа с интегрирующим элементом, а также может включать в себя цепь обратной связи для контроля выходного тока. Были исследованы пять различных неизолированных драйверов, сделанных в Китае, для светодиодных ламп Т8 и GU10. Внешний вид драйверов, их блок-схемы и результаты измерений приведены на рис. 1–7 и в таблицах 1, 2. Исследование эффективности, фактора мощности и уровня гармонических составляющих входного тока проводилось с помощью измерителя Chroma 66202.
Номер
гармоники
Значение гармоники входного тока светодиодного драйвера, мА
Источник: led-e.ru