Генератор сигналов был в лаборатории нашего института — это такой большой ящик с десятком ручек регулировки. Он был ламповый и грелся минуты три до выхода на нормальный режим работы. Может ли маленькая платка за 7 долларов выполнять основные его функции? Посмотрим.
Технические характеристики генератора из описания магазина:
Питание: 9-12 вольт
Форма сигналов: прямоугольная, треугольная, синус
Импеданс: 600 Ом ± 10%
Частота: 1 Гц — 1 Мгц
Настройка частоты и амплитуды
Разрешение сигнала: 5 бит
Возможность грубой и тонкой настройки.
Синус:
Амплитуда: 0-3 вольта при питании 9 вольт
Дисторшн: менее 1% при частоте 1 КГц.
Равномерность: +0.05dB в диапазоне 1Гц — 100КГц.
Прямоугольный сигнал:
Амплитуда без нагрузки: 8 Вольт при питании 9 Вольт.
Возрастание сигнала — менее 50нс (на частоте 1КГц)
Спад синала — менее 30нс (на частоте 1КГц)
Симметричность: менее 5% (на частоте 1КГц)
Треугольный сигнал:
Глушитель ТЕЛЕВИЗОРОВ. Пионерская схема «ПРИВЕТ СОСЕД» . Тишина в эфире без лишнего шума.
Амплитуда: 0 — 3 вольта при питании 9 вольт.
Линейность: менее 1% в диапазоне до 100 КГц при токе 10 мА.
Там же красным по белому написано, что эта версия поставки не включает в комплект корпус. Но мне прислали с корпусом. Приятная неожиданность.
Итак, генератор сигнала поставляется в разобранном виде. Но собирается настолько быстро и приятно, что это пожалуй даже плюс.
В комплекте присутствует плата, набор комплектующих, микросхема XR-2206 (основа всего проекта), инструкция, детали корпуса из оргстекла и необходимые для сборки винтики и гаечки.
Инструкция достаточно подробная, ошибиться в сборке по ней невозможно. Кроме схемы размещения деталей, там указан из список с упоминанием полярности там, где это надо, общие рекомендации по сборке и принципиальная схема обвязки микросхемы. Все на английском.
Деталей мало, установка очевидна, справится даже чайник. Белая полоска на электролитиках должна совпадать с заштрихованной стороной круга, нарисованного на плате. Резисторы лучше проверять мультиметром, прежде чем устанавливать. Пожалуй, и вся премудрость.
Детели установлены на свои места, можно приступать к пайке.
Но прежде чем паять, я заглянул в датшит и полистал в интернете. Там советуют заменить резистор R4, отвечающий за подстройку синуса, на реостат. Это даст возможности минимизировать ненужные гармоники и приблизить сигнал к идеальной синусоиде. Так что я решил сразу впаять реостат в 500 Ом.
🐌 Схема простого генератора синуса со 🔨 сложной судьбой. 🔫
Вот так получилось. Паяется все легко, только перед впаиванием разъема питания нужно примерить боковину корпуса, чтобы потом все нормально собралось. Снизу платы желательно длинные «хвосты» не оставлять, так как плата должна быть прижата к дну корпуса, иначе не хватит длины болтов, фиксирующих плату.
В конце собираем корпус. Детали хорошо подогнаны друг к другу. Винты вкручиваются в фигурные отверстия в форме звездочек. Они легко и с первого раза нарезают там резьбу, сидят потом плотно, не выпадают и не выкручиваются.
Длины штатных винтов, крепящих плату, мне не хватило, так что я подобрал свои, даже с дистанционными шайбочками.
Вот итог всех трудов:
Подсоединяем осциллограф, включаем.
Все работает. Попробуем повысить напряжение питания. По датшиту микросхемы, она питается напряжением от 10 до 26 вольт.
Синхронизация сбивается, при обследованиии синусодиы видно, что начинет сбиваться фаза.
В режиме прямоугольного сигнала та же история:
При снижении напряжения питания ниже 12 вольт сигнал восстанавливается, но амплитуда выходного сигнала ограничивается входным минус 2 — 3 вольта:
Ну нам и не обещали работу от 26 вольт. В описании генератора заявлена работа как раз от 12 вольт. Так что все по-честному.
Посмотрим на диапазон частот:
Минимально получилось порядка 0,6 Гц.
Не подумайте, что это такой затейливый сигнал, это просто осциллограф дуреет и считает, что мы имеем дело с постоянным напряжением. При переключении в режим постоянного напряжение получаем такую картину:
Вот так вот! Полка 1 вольт, размах сигнала от 1 до 9,8 вольт. Амплитуда, таким образом, 8,8 вольта. Такая же история и с другими сигналами — синусом и треугольником. Для некоторых применений это не критично, а вот для тестирования аппаратуры, где нет входного фильтра, полка ни к чему.
Такой сигнал надо пропускать через конденсатор, чтобы лишить его постоянной составляющей.
Устанавливаем конденсатор 2,2мкФ:
Ну вот. Теперь красивая синусоида вокруг нуля и в режиме измерения постоянки!
Крупнее, в режиме переменного напряжения:
И тот же сигнал, в режиме постоянного напряжения, с фильтрующим конденсатором 2,2мкФ:
С треугольником что-то не задалось, форма получилась такая:
При замене конденсатора на 3,3 мкФ все пришло более-менее в норму:
Но, прямо скажем, 0,6 Гц — не самый актуальный режим работы. Вот как выглядит треугольник на частоте в 1 КГц. Без конденсатора, в режиме AC:
С конденсатором, в режиме DC:
Как видим, все совершенно одинаково.
Теперь выкручиваем ручки частоты на максимум:
Синус красивый, частота получилась даже больше заявленной: 1,339 МГц.
Ну а что вы хотели — на таких-то частотах! От синуса отличается чуть большей амплитудой. На самом деле, такая разница в амплитудных значениях характерна для всего диапазона частот: в микросхеме синус делается из треугольника, у которого сглаживаются вершины.
Прямоугольный сигнал идет с другого выхода микросхемы. Он не регулируется по амплитуде, хотя она у него зависит от входного напряжения. На самом деле, это еще большой вопрос, выдает ли генератор кривой сигнал, или это осциллограф не может его отобразить. Или вообще щупы виноваты.
Амплитуда синуса и треугольника, как я уже говорил, может тоже регулироваться в известных пределах: если перестараться, то треугольник может получиться таким:
Соответственно, заваливаются и вершины синуса, но это не так заметно. Поэтому в режиме синуса полезно иногда переключаться на треугольник и проверять, хорошо ли отображаются вершины. Уменьшаем амплитуду:
Ну вот, теперь и синус будет красивый:
Для того, чтобы понять, насколько хорош этот синус, есть проверенный способ: глянуть на преобразование Фурье от него. Вот что получилось:
У нас есть хороший пик на частоте 100 КГц, есть пики второй и третьей гармоники, но они вполне допустимых размеров, для такой техники. Установленным подстроечником можно их минимизировать. Удобно использовать прецизионный реостат, там от упора до упора много оборотов винта, так что удобно настроить буквально доли ома. Эта картинка — как раз результат моей подстройки.
У меня получилось оптимальное значение резистора R4 — 243 Ома. К слову, в набор положили резистор 330 Ом.
Для сравнения, вот спектр треугольного сигнала:
Видим красивые пики на боковых гармониках, ну так это же треугольник, а не синусоида. Для комплекта, вот прямоугольный сигнал:
Тут и так все понятно. Как видим, прямоугольник на 100 КГц остается более-менее прямоугольным. Проверим, что делается на 1 МГц:
Меандр похож на клюв тукана.
Картинки у меня кончились, теперь пару слов общих впечатлений.
Регулировка амплитуды грубовата в области низких значений, кроме того, ее почему-то сделали обратной: по часовой стрелке — уменьшаем, против часовой — увеличиваем. Регулировка частоты, что грубая, что тонкая — почти одинаково влияют на результат. Тонкую я сделал бы реостатиком меньшего номинала. Но это придирки, конечно, можно привыкнуть за пару раз использования.
Резистор, который влияет на дисторшн синуса, можно было бы сделать подстроечником, как и предусмотрено в датшите микросхемы. Но если уж делать резистор, то 330 Ом — явно перебор, там нужно 200-250 Ом.
В остальном прибор порадовал: собирается легко, можно даже с ребенком собрать, как конструктор. Довольно хорошо генерирует сигналы до полумегагерца, дальше хорошо получается в основном синус. Но меандр таких частот обычно и не нужен. Вообще, прибор за 7 долларов, который помещается в карман и способный перекрыть 98% потребностей радиолюбителя в генерировании сигналов — вполне хороший выбор.
Порадовал и корпус — собирается хорошо, выглядит превосходно!
Ссылка на генератор сигналов в магазине: тыц. (цена сегодня $7.68)
Подстроечный реостатик на Али — набор 15 штук разных номиналов, на все случаи жизни. Цена около ста рублей. Пятьсот Ом там тоже есть.
Автор не входит в состав редакции iXBT.com (подробнее »)
Об авторе
Автор tykhon ПА Рейтинг +271.80
Блог Своими руками (DIY) 1328 145 RSS Вступить Подписаться
Не упускай интересное! Подпишись на нас в ВК и Telegram.
Пожаловаться на комментарий
9 комментариев
Добавить комментарий
Аудиторию ихбт можно поделить условно на две категории: младое поколение, с «гуманитарным складом ума», для которых этот генератор из области неопознанного, и условно «старшее» поколение, которое эти самые генераторы и разрабатывало в своё время, так что из обзора они ничего нового не узнают и даже его читать не станут 🙂 Поэтому и такая «активность» получилась 🙂
Ну что ж, пусть так. Люди разные нужны, люди разные важны.
Даже если никому больше не пригодится, знания о том, что же я собрал, мне самому не помешают.
клевая штучка, спс
А мне обзорчик пригодился, даже и не зняю к какой категории себя отнести. Спасибо.
Здравствуйте, очень хороший обзор. Позвольте, задать вам небольшие вопросы по собранному генератору. 1) Изменяя сопротивление R4 вы минимизировали вторую и третью гармоники синусоидального сигнала на частоте 100кГц, а на частотах в 100Гц, 1кГц, 10кГц значение сопротивления этого резистора останется прежним, или его нужно будет подстраивать, для уменьшения гармоник на этих частотах?
2) Для улучшения симметричности выходного сигнала между выводами 15 и 16 XR2206 впаиваются резистор номиналом 22кОм с ползунком подключённым нулевому проводу. Вы это не пробовали? Спасибо.
Спс хороший комментарий
Тоже собрал для внука. Боковая стенка так же упиралась в разъем ( подпилил его). Проблему с регулировкой амплитуды устранить легко, снизу разрежем дорожку между выводами потенциометра и ставим перемычку с другой стороны (между центральным выводом и другим боковым). Так же можно поступить с плавной регулировкой частоты, впаяв параллельно, к крайним выводам потенциометра «Fine» резистор 68-22 кОм и т.п. К сожалению лучше бы их поменять, ( например 510-220 кОм, «грубый» и 22-10 кОм, «точный») но уже впаяны намертво
Привет. Можешь пожалуйста скинуть рисунок печатной платы. Дело в том что на своей я повредил дорожки и не могу восзоздать
Занимаюсь этим конструктором больше года. Первый вариант давно упрятан в корпус от прибора «Мультитест МТ». Родные платы утеряны были, целым остался блок питания и миллиамперметр. Внутри места более чем достаточно, есть готовые кнопки для выходного делителя и переключателя диапазона частот. В общем, самый подходящий размер для генератора НЧ.
Но речь не об этом. Сейчас на сборке у меня вторая плата конструктора. За год внимательно и вдумчиво изучал технические характеристики самой микросхемы XR2206CP. Оказалось, что очень интересная микросхема с большими возможностями. Сразу надо сказать, в первом варианте генератор работал до 4 мГц. Теперь о главном.
Как я понял, максимальную отдачу по всем функциям можно получить при питании генератора двухполярным напряжением +-12 вольт. Выход НЧ и меандра нужно развязывать буферными каскадами. Обязательно ставить плавные регуляторы для уменьшения КНИ и улучшения симметрии. Добавляя конструктор другими генераторами можно получить генератор качающейся частоты (для настройки УНЧ, приемников и контуров), можно получить режим АМ и ЧМ. А также вольтметр, если добавить в генератор цифровой индикатор для измерения выходной частоты, соответственно входную часть и делители для режима вольтметра.
У микросхемы есть зависимость уровня искажений от величины питающего напряжения, уровня выходного напряжения и, собственно, частоты. Применение буферных каскадов и дополнительных внешних усилителей позволяет подобрать Uпит., Uвых. самой XR2206, СИММЕТРИЮ и КНИ до уровня, значительно лучшего, чем заявлено производителем. Причем, для каждого конкретного экземпляра микросхемы значения могут быть сугубо индивидуальными.
Как известно, в выходном сигнале любого генератора всегда есть гармоники. Все, кто настраивал и ремонтировал радиоприемники, знают, что для проверки чувствительности нужно подавать на вход десятки и единицы микровольт. Данный генератор можно применять смело для настройки приемников до 10 мгц. Используя гармоники и точно зная частоту первой гармоники, основного сигнала. Маленький уровень ВЧ гармоники избавит от необходимости применения делителя и ослабителя сигнала.
Для любителей экспериментов микросхема XR2206 предоставляет самые широкие возможности.
Источник: www.ixbt.com
Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн
Лестницы. Входная группа. Материалы. Двери. Замки.
Дизайн » Утепление » Генератор видеосигнала на микроконтроллере измерения. Генератор сигналов для регулировки телевизоров — Телевизионная техника — Схемы бытовых устройств Генератор испытательных телевизионных сигналов своими руками
Генератор видеосигнала на микроконтроллере измерения. Генератор сигналов для регулировки телевизоров — Телевизионная техника — Схемы бытовых устройств Генератор испытательных телевизионных сигналов своими руками
Сколько я занимаюсь электроникой, всегда хотел заиметь генератор сигналов различной формы. Недавно мне понадобилось получить синусоидальный сигнал с помощью цифровых методов, и я решил что сделаю себе хороший генератор! В итоге я сделал простой, но функциональный генератор сигналов который может генерировать: меандр, треугольник, синус, шум и пилообразный сигналы.
Максимально генерируемая частота — 60kHz (килогерц). Пока что в настоящей прошивке, частоту можно устанавливать только при генерации меандра, для остальных сигналов можно устанавливать лишь задержку в микросекундах. Основой устройства является AVR микроконтроллер ATtiny2313, сигнал генерируется с помощью 8 битного цифро-аналогового преобразователя (ЦАП), данные о частоте, сигнале или задержки отображаются на ЖК индикаторе 8×2. Вот собственно принципиальная схема:
Для сборки понадобятся детали:
1. Микроконтроллер Attiny2313 — 1шт.
2. ЖК индикатор WH0802 или с HD44780 совместимом — 1шт.
3. Микросхема LM324 — 1шт.
4. Тактовые кнопки без фиксации — 3шт.
5. Резистор 10 кОм — 1шт.
6. Резистор 300 Ом — 1шт.
7. Резистор 2 кОм — 8шт.
8. Резистор 1 кОм — 9шт.
ЦАП собран на резисторах и подключён напрямую к порту B микроконтроллера, сигнал после ЦАПа усиливается с помощью операционного усилителя LM324. ЖК индикатор я применил WH0802 c совместимом контроллером, данный ЖКИ имеет 2 строки по 8 знакомест каждая. Существенно применение любого ЖК индикатора с совместимом контроллером с HD44780.
Микроконтроллер применить Attiny2313 можно с любыми буквенными индексами, в любых корпусах. Кнопки можно применить любые тактовые, без фиксации. Кнопкой «Выбор» выбирается тип генерируемого сигнала. Кнопками «Плюс» и «Минус» устанавливается частота или задержка. При включении устройства оно сразу начинает генерировать сигнал, по умолчанию это меандр.
Напряжение питания: 5 вольт. Вот осциллограммы генерируемых генератором сигналов:
Я собрал свой генератор сигналов в пластмассовом корпусе ZIV, вот что получилось:
Первые испытания вместе с самодельным осциллографом:
Схему я собрал на печатной плате сделанной с помощью , рисунок печатной платы в можно найти в файлах к статье. На плате я использовал детали в SMD корпусах, исключение лишь составляет микросхема LM324, она использована в DIP корпусе. Прошивку для устройства я писал в среде BASCOM-AVR исходник прилагается. Также прилагается проект устройства в программе . Кстати, после прошивки не забудьте установить следующие фьюз биты (для программы SinaProg):
Список радиоэлементов
Принципиальная схема и фото несложного пробника (генератора испытательного сигнала), предназначенного для проверки и настройки телевизоров.
Пробник-генератор ТВ сигнала собран на основе микроконтроллере серии pic12f629, и по совокупности габаритов, потребления тока, стоимости изготовления прибора и функционалу для телемастера, просто незаменим. Напряжение питания 3 вольта, т.е. две пальчиковые батарейки. Ток потебления в режиме генерации 11 миллиампер, в режиме сна — всего 3 микроампера.
Принципиальная схема ТВ генератора сигнала
Рисунок печатной платы
Данный пробник умеет генерировать пять картинок, что вполне достаточно для проверки и ремонта строчной, кадровой развёрток телевизора, регулировки сведения и геометрических искажений растра, баланса цвета, контроля прохождения сигналов по цепям телевизора. При кратковременном нажатии на кнопку он просыпается и начинает генерировать первую картинку, при последующих нажатиях на неё картинки переключаютса по кругу. При длительном удержании кнопки, в момент отпускания генератор переходит в режим сна. Также в режим сна он переходит автоматически если он включен более 5 минут.
К статье прилогается архив, в котором есть схема, плата пробника, две прошивки. На видео видно, что у меня на телевизоре картинка слегка не линейна — это потому, что телевизору 12 лет, а может что-то в видеовходе не то.
Прибор содержит стабилизированный кварцевым резонатором генератор (DD1.1, DD1.2), делители частоты (DD2 и DD3, DD5.1, DD5.2, DD4, DD1.3, DD1.4), формирователи строчных синхронизирующих (DD6.2) и гасящих (DD5.3, VD1, VD2, R4) импульсов, кадровых синхронизирующих импульсов (DD7.2), сигналов градации яркости (R1-R3) и вертикальных (DD7.1) и горизонтальных (DD6.1) линий сетчатого поля, сумматоры (VD3-VD8, R8, R9) и эмиттерный повторитель (VT1).
ис. 1 — Принципиальная схема генератора сигналов.
Генератор вырабатывает сигнал образцовой частоты 500 кГц, которую делитель DD2 уменьшает до строчной (15625 Гц) на выходе 16. Элемент DD5.3 и диоды VD1, VD2 формируют строчные гасящие импульсы (рис.2, а), триггер DD6.2 синхронизирующие (рис.2,6). Сигнал с частотой полей получается на выходе элемента DD1.4 после деления строчной частоты последовательно включенными делителями на счетчике DD3 и элементах DD5.1, DD5.2 (коэффициент деления 26) и на счетчике DD4 и элементах DD1.3, DD1.4 (коэффициент деления 12). С выхода триггера DD7.2 снимаются кадровые синхроимпульсы с частотой повторения около 50,08 Гц (рис.2, в).
В нужном соотношении со строчными импульсами они складываются в сумматоре на диодах VD6 — VD8 и резисторах R8, R9 (рис.2, г). Через эмиттерный повторитель на транзисторе VT1 и регулятор уровня — переменный резистор R10 — полный видеосигнал белого поля (при ненажатых кнопках SB1, SB2) поступает на штепсель ХР1, который подключают к видеовходу телевизора.
Для получения напряжения градаций яркости служит формирователь на резисторах R1-R3, представляющий собой цифроаналоговый преобразователь. При нажатии на кнопку SB1 это напряжение добавляется (через диод VD5) к сигналу белого поля.
Импульсы вертикальных и горизонтальных линий сигнала сетчатого поля, формируемые соответственно триггерами DD7.1 и DD6.1, складываются в сумматоре на диодах VD3, VD4 и резисторе R6. Сигнал включают кнопкой SB2.
Питается прибор от батареи «Крона» (можно использовать аккумуляторную батарею 7Д-0.115) и сохраняет работоспособность при снижении ее напряжения до 6 В. Резисторы МЛТ, конденсаторы КТ-1 (С1), КМ-4. КМ-5 или КМ-б (С3-С5) и К50-6 (С2), кнопочные переключатели П2К (SB1, SB2 — с зависимой фиксацией, SB3 — с независимой).
Налаживание генератора сводится к получению желаемых яркости и ширины вертикальных линий подбором резистора R5 по изображению сетчатого поля на экране телевизора. Процентное соотношение амплитуд составляющих видеосигнала при необходимости устанавливают подбором резистора R9 согласно осциллограмме на рис.2, г при испытательном сигнале белого поля.
Рис. 2 — Осциллограммы генератора сигналов.
P.S. Для повышения надежности работы устройства вход С триггера DD7.1 рекомендуется соединить с общим проводом через резистор сопротивлением 100 кОм.
Для генерации видеосигнала достаточно всего одного микроконтроллера и двух резисторов. То есть можно сделать буквально карманный генератор видеосигнала размером с брелок. Такой прибор пригодится телемастеру. Его можно использовать при сведении кинескопа, регулировке чистоты цвета и линейности.
Работа генератора и его характеристики.
Генератор подключается к видеовходу телевизора, обычно это разъем типа «тюльпан» или «SCART»
Прибор генерирует шесть полей:
— текстовое поле из 17 строк;
— сетка 8×6;
— сетка 12×9;
— мелкое шахматное поле 8×6;
— крупное шахматное поле 2×2;
— белое поле.
Переключение между полями осуществляется кратковременным (длительностью менее 1с.) нажатием кнопки S2. Удержание этой кнопки в нажатом состоянии более длительное время (дольше 1 с.) приводит к выключению генератора (микроконтроллер переходит в состояние «SLEEP»). Включение генератора производится нажатием кнопки S1. О состоянии прибора (включен / выключен) сигнализирует светодиод.
Технические характеристики прибора:
— тактовая частота — 12 МГц;
— напряжение питания 3 — 5 В;
— ток потрребления в рабочем режиме:
— при напряжении питания 3В — около 5мА;
— при напряжении питания 5В — около 12мА;
— частота кадров — 50 Гц;
— число строк в кадре — 625.
Схема.
Схема очень проста.
Вся работа по формир-
ованию видеосигнала
выполняется программой,
зашитой в микрокон-
троллере. Два резистора
вместе с сопротивлением
видеовхода телевизора
обеспечивают необходи-
мые уровни напряжения
видеосигнала:
— 0 В — синхроуровень;
— 0,3 В — уровень черного;
— 0,7 В — уровень серого;
— 1 В — уровень белого.
Для формирования видеосигнала используется нулевой бит PORTA и целиком весь PORTB. (Этот порт работает в сдвиговом режиме. Несмотря на то, что сигнал снимается только с его нулевого бита, программа использует его весь. Поэтому все биты PORTB настроены как выходы.) Первый бит PORTA используется для индикации состояния генератора. Когда прибор включен, — светодиод горит.
Когда прибор выключен, — светодиод погашен. Третий бит PORTA используется для переключения режимов работы генератора и его выключения. Кратковременное нажатие кнопки S2 позволяет перейти от одного поля генератора к другому. При удержании этой кнопки в нажатом состоянии дольше 1 с. прибор выключается (микроконтроллер переходит в состояние «SLEEP»).
Чтобы включить генератор необходимо выполнить сброс. Это осуществляется нажатием кнопки S1. Напряжение питания прибора можно выбрать в пределах 3 — 5 В. При этом соответственно должны быть подобраны номиналы резисторов.
3В. – R5=456Ом и R6=228Ом
3,5В – R5=571Ом и R6=285Ом
4В. – R5=684Ом и R6=342Ом
4,5В – R5=802Ом и R6=401Ом
5В. — R5=900Ом и R6=450Ом
Здесь указаны расчетные значения. Реально можно ставить резисторы из стандартного ряда, например для 5В — 910Ом и 470Ом, а для 3В — 470Ом и 240Ом.
Напряжение питания генератора может быть и меньше 3В. Для каждого конкретного PICа минимум следует определять эксперементально. У меня, например, 20МГц-й PIC выпуска 2001 года работал и при 2,3 В.
Прграмма.
Программа формирует 6 полей. Каждое поле состоит из 301 строки (300 информационных строк + одна черная). Вообще расчетное число – 305 (625 строк растра — 15 строк кадровой синхронизации = 610. Информация в кадре выводится через строку (подробнее об этом смотри здесь), поэтому 610 / 2 = 305). Но при таком числе строк размер растра по вертикали получается немного больше того, что формирует видеосигнал, передаваемый телецентром.
Первая строка в каждом поле черная. В это время опрашивается состояние кнопки S2, вычисляется время удержания ее в нажатом состоянии и определяется необходимость перехода от одного поля к другому.
В графических полях есть небольшие искажения вертикальных линий. Это связано с тем, что длина некоторых строк на пару тактов больше остальных из за необходимости установления счетчиков циклов. Вцелом подпрограммы, формирующие графические поля, очень просты, поэтому нет необходимости их коментировать.
Подробнее разберем ту часть программы, которая формирует текстовое поле. Это наиболее сложный участок программы, занимает большую ее часть, использует максимум ресурсов микроконтроллера (вся память данных и значительная часть ОЗУ). Здесь используются фрагменты кода, взятые из игры Pong, которую написал Rickard Gunee.
Текстовое поле состоит из 17 строк, каждая из которых может состоять не более, чем из восьми символов. Символы отображаются через строку, то есть одна строка текста занимает 17 строк растра. (Такое отображение связано с ограниченными возможностями PIC.) Информация о графике символов хранится в памяти программ в разделе таблица.
Информация о тексте строк хранится в памяти данных (64 слова = 8 строк по 8 символов). Например в строке 08h (адресами от 08h до 0Fh) записано следующее:.20.60.48.50.90.58.20 20. Каждое значение — это координата (смещение от начала) символа в таблице. Значение.20. соответствует пробелу, .60. — буква «В», .48. — буква «И», и так далее. А все вместе образует «_ВИДЕО__».
Разберем на примере, как выводится текст. Согласно программе, в 12-й текстовой строке экрана необходимо вывести информацию, на которую ссылается строка памяти данных 28h (A0 B8 68 C8 D8 70 E0 D0). Таким образом, в следующих 17 строках растра должен быть выведен текст: » p i c 1 6 f 8 4 «. Это происходит следующим образом. В первой из 17 строк выводится только черный уровень.
В эти 64 мкс, пока на экране отображается черная строка, в регистры ОЗУ переписываются «верхние значения» символов: 00h.от «p», 08h от «i», 00h от «c» 18h от «1» и так далее. Во время следующей строки эти данные последовательно передаются в PORTB, то есть на видеовыход. Третья строка снова черная. За время ее выполнения, в буфер переписываются «вторые сверху» значения символов: 00h.от «p», 00h от «i», 00h от «c» 1Ch от «1»… В четвертой строке эти данные выводятся на экран. И так далее, пока вся строка не будет отображена.
Подпрограмма кадровой синхронизации целиком взята из игры Pong, которую написал Rickard Gunee . Эта подпрограмма короткая, но довольно запутанная. Если объяснять, как она работает то, получится еще длиннее и запутаннее. Лучше всего положить рядом текст подпрограммы и рисунок осциллограммы кадровых синхроимпульсов, и не торопясь разобрать каждую строку кода. Скажу только, что подпрограмма начинает выполняться не с верхней строчки, а из середины (:-)), от метки «vertsync».
Разгон PIC16F84.
Как видно из схемы в этом проекте микроконтроллер работает на частоте 12МГц. На сегодняшний день выпускаются три версии PIC16F84: на 4МГц, на 10МГц и на 20МГц. (на 1.1.2002 соотношение цен приблизительно такое: $3.5, $5.3 и $6.3) В своем проекте Pong Rickard Gunee утверждает, что использовал 4МГц-е PIC16F84 и они часами работали на частоте 12МГц без проблем. Я попробовал, и действительно 4МГц-й PIC нормально работает на частоте, которая в три раза (. ) превышает его допустимую частоту (правда я не стал испытывать судьбу и включал генератор лишь на несколько минут). При этом у 4МГц-го PICа потребляемый ток был на 10 .. 20 % больше, чем у 20МГц-го (отсюда, видимо и ограничение по частоте). Думаю, что 10МГц-й микроконтроллер можно разгонять до 12МГц без риска, но в коммерческих проектах этого, конечно же, делать не стоит.
Изготовление.
Приветствую всех!
Уважаемые посетители сайта, хочу предложить Вам схему и печатную плату ГТИС (генератора телевизионных испытательных сигналов),который я сделал год назад по просьбе товарища.Была поставлена задача разработать печатную плату,которая должна
вмещаться в корпус «Ranitsa RP-201».(часы — радиоприемник).Т.к. я в свое
время уже собирал универсальный генератор испытательных телевизионных сигналов (версия 2.0 «Радиолюбитель» 1999г. №5 стр.5. Авторы:Chirkov радиолюбительского» производства
печатных плат является русифицированная Sprint Layout 3.0.Нравится мне эта
программа за возможность разводки по рисунку.Сосканированные рисунки плат из
журналов и другой литературы могут быть использованы для восстановления дорожек
платы или переразводки элементов. Для этого необходимо сканировать изображение
(или использовать любой графический файл,переведя в файл *.BMP),оно будет
показано как фоновое на плате.
Программа SPlan 5.0 представляет из себя редактор принципиальных схем, она
поддерживает макросы, как встроеные,так и пользователя.Скачать программы можно
с сайта—
И если даже, вы уже работали с этими программами, рекомендуется прочитать
все разделы руссифицированых файлов помощи до конца, не исключено что вы найдете
неизвестные ранее возможности программ.С этого сайта можно скачать Sprint Layout
4.0 (русская версия)
Используя программу Sprint Layout 3.0,Вы можете изменять мой вариант разводки
печатных плат.(например,у Вас другой силовой трасформатор,диодный мостик,
корпус)
Схема и печатная плата пока так сказать для затравки.(изменен каскад на
тр-ах V5 и V6).В последующем будут выложены файлы (и доработка)
1.Генератор полного цветового телевизионного сигнала на двух микросхемах
Статья из ж. » РЭТ » №5 2003 г. автор:М.Медведев (формат DJVU)
2.Video pattern generator -автор: Marcelo Maggi
3.Зарубежные интегральные видеокодеры
Статья из ж. » Радиоаматор » №1-3 2002 г.автор:С.М.Рюмик (формат DJVU)
4.Даташиты на м/c TDA8505,CXA1645M в формате DJVU (я преобразовал из PDF —
меньше во много раз занимают места).
Источник: hiddenshell.ru
Генератор ТВ сигнала на микроконтроллере
Передатчики
Автор admin На чтение 2 мин Просмотров 26 Опубликовано 18.05.2023
Пробник-генератор ТВ сигнала собран на основе микроконтроллере серии pic12f629, и по совокупности габаритов, потребления тока, стоимости изготовления прибора и функционалу для телемастера, просто незаменим. Напряжение питания 3 вольта, т.е. две пальчиковые батарейки. Ток потебления в режиме генерации 11 миллиампер, в режиме сна — всего 3 микроампера.