Какие светодиоды стоят в лед подсветке

Светодиод – простейший индикатор, который можно использовать для отладки кода: его можно включить при срабатывании условия или просто подмигнуть. Но для начала его нужно подключить.

Подключение светодиода

Светодиод – это устройство, которое питается током, а не напряжением. Как это понимать? Яркость светодиода зависит от тока, который через него проходит. Казалось бы, достаточно знания закона Ома из первого урока в разделе, но это не так!

  • Светодиод в цепи нельзя заменить “резистором”, потому что он ведёт себя иначе, нелинейно.
  • Светодиод полярен, то есть при неправильном подключении он светиться не будет.
  • Светодиод имеет характеристику максимального тока, на котором может работать. Для обычных 3 и 5 мм светодиодов это обычно 20 мА.
  • Светодиод имеет характеристику падение напряжения (Forward Voltage), величина этого падения зависит от излучаемого цвета. Цвет излучается кристаллом, состав которого и определяет цвет. У красных светодиодов падение составляет ~2.5 вольта, у синих, зелёных и белых ~3.5 вольта. Более точную информацию можно узнать из документации на конкретный светодиод. Если документации нет – можно пользоваться вот этой табличкой, тут даны минимальные значения:

blank Если питать светодиод напряжением ниже его напряжения падения, то яркость будет не максимальная, и здесь никаких драйверов не нужно. То есть красный светодиод можно без проблем питать от пальчиковой батарейки. В то же время кристалл может деградировать и напряжение уменьшится, что приведёт к росту тока.

Какие светодиоды ставить??? Почему ограничиваем ток подсветки?

Но это редкий случай. Как только мы превышаем напряжение падения – нужно стабилизировать питание, а именно – ток. В простейшем случае для обычного светодиода ставят резистор, номинал которого нужно рассчитать по формуле: R = (Vcc — Vdo) / I , где Vcc это напряжение питания, Vdo – напряжение падения (зависит от светодиода), I – ток светодиода, а R – искомое сопротивление резистора.

Посчитаем резистор для обычного 5 мм светодиода красного цвета при питании от 5 Вольт на максимальной яркости (2.5 В, 20 мА): (5-2.5)/0.02=125 Ом. Для синего и зелёного цветов получится 75 Ом. Яркость светодиода нелинейно зависит от тока, поэтому “на глаз” при 10 мА яркость будет такая же, как на 20 мА, и величину сопротивления можно увеличить.

А вот уменьшать нельзя, как и подключать вообще без резистора. В большинстве уроков и проектов в целом для обычных светодиодов всех цветов ставят резистор номиналом 220 Ом. С резистором в 1 кОм светодиод тоже будет светиться, но уже заметно тусклее. Таким образом при помощи резистора можно аппаратно задать яркость светодиода. Как определить плюс (анод) и минус (катод) светодиода? Плюсовая нога длиннее, со стороны минусовой ноги бортик чуть срезан, а сам электрод внутри светодиода – крупнее: blank

Мигаем

blank

Мигать светодиодом с Ардуино очень просто: подключаем катод к GND, а анод – к пину GPIO. Очень многие уверены в том, что “аналоговые” пины являются именно аналоговыми, но это не так: это обычные цифровые пины с возможностью оцифровки аналогового сигнала. На плате Nano пины A0-A5 являются цифровыми и аналоговыми одновременно, а вот A6 и A7 – именно аналоговыми, то есть могут только читать аналоговый сигнал. Так что подключимся к A1, настраиваем пин как выход и мигаем!

void setup() < pinMode(A1, OUTPUT); >void loop()

Как избавиться от delay() в любом коде я рассказывал вот в этом уроке.

Мигаем плавно

Как насчёт плавного управления яркостью? Вспомним урок про ШИМ сигнал и подключим светодиод к одному из ШИМ пинов (на Nano это D3, D5, D6, D9, D10, D11). Сделаем пин как выход и сможем управлять яркостью при помощи ШИМ сигнала! Читай урок про ШИМ сигнал. Простой пример с несколькими уровнями яркости:

void setup() < pinMode(3, OUTPUT); >void loop()

blank

Подключим потенциометр на A0 и попробуем регулировать яркость с его помощью:

void setup() < pinMode(3, OUTPUT); >void loop() < // analogRead(0) / 4 == 0. 255 analogWrite(3, analogRead(0) / 4); delay(100); >

Как вы можете видеть, все очень просто. Сделаем ещё одну интересную вещь: попробуем плавно включать и выключать светодиод, для чего нам понадобится цикл из урока про циклы.

void setup() < pinMode(3, OUTPUT); >void loop() < for (int i = 0; i < 255; i++) < analogWrite(3, i); delay(20); >for (int i = 255; i > 0; i—) < analogWrite(3, i); delay(20); >>

Плохой пример! Алгоритм плавного изменения яркости блокирует выполнение кода. Давайте сделаем его на таймере аптайма.

void setup() < pinMode(3, OUTPUT); >uint32_t tmr; int val = 0; bool dir = true; void loop() < if (millis() — tmr >= 20) < tmr = millis(); if (dir) val++; // увеличиваем яркость else val—; // уменьшаем if (val >= 255 || val >

Теперь изменение яркости не блокирует выполнение основного цикла, но и остальной код должен быть написан таким же образом, чтобы не блокировать вызовы функции изменения яркости! Ещё одним вариантом может быть работа по прерыванию таймера, см. урок.

Светодиод будет мигать не очень плавно: яркость будет нарастать слишком резко и практически не будет меняться. Связано это с тем, что человеческий глаз воспринимает яркость нелинейно, а мы управляем ей линейно. Для более плавного ощущения яркости используется коррекция по CRT гамме, которая переехала из этого урока в отдельный урок по миганию светодиодом по CRT гамме в блоке алгоритмов. Изучи обязательно!

blank

Ещё один момент: если подключить светодиод наоборот, к VCC, то яркость его будет инвертирована: 255 выключит светодиод, а 0 – включит, потому что ток потечет в другую сторону:

Светодиодные ленты

Светодиодная лента представляет собой цепь соединённых светодиодов. Соединены они не просто так, например обычная 12V лента состоит из сегментов по 3 светодиода в каждом. Сегменты соединены между собой параллельно, то есть на каждый приходят общие 12 Вольт.

Еще по теме:  ТВ передача бесогон михалкова

Внутри сегмента светодиоды соединены последовательно, а ток на них ограничивается общим резистором (могут стоять два для более эффективного теплоотвода): Таким образом достаточно просто подать 12V от источника напряжения на ленту и она будет светиться. За простоту и удобство приходится платить эффективностью. Простая математика: три белых светодиода, каждому нужно по ~3.2V, суммарно это 9.6V. Подключаем ленту к 12V и понимаем, что 2.5V у нас просто уходят в тепло на резисторах. И это в лучшем случае, если резистор подобран так, чтобы светодиод горел на полную яркость.

Подключаем к Arduino

Здесь всё очень просто: смотрите предыдущий урок по управлению нагрузкой постоянного тока. Управлять можно через реле, транзистор или твердотельное реле. Нас больше всего интересует плавное управление яркостью, поэтому продублирую схему с полевым транзистором: blank

Конечно же, можно воспользоваться китайским мосфет-модулем! Пин VCC кстати можно не подключать, он никуда не подведён на плате. blank

Управление

Подключенная через транзистор лента управляется точно так же, как светодиод в предыдущей главе, то есть все примеры кода с миганием, плавным миганием и управление потенциометром подходят к этой схеме. Про RGB и адресные светодиодные ленты мы поговорим в отдельных уроках.

Питание и мощность

Светодиодная лента потребляет немаленький ток, поэтому нужно убедиться в том, что выбранный блок питания, модуль или аккумулятор справится с задачей. Но сначала обязательно прочитайте урок по закону Ома! Потребляемая мощность светодиодной ленты зависит от нескольких факторов:

  • Яркость. Максимальная мощность будет потребляться на максимальной яркости.
  • Напряжение питания (чаще всего 12V). Также бывают 5, 24 и 220V ленты.
  • Качество, тип и цвет светодиодов: одинаковые на вид светодиоды могут потреблять разный ток и светить с разной яркостью.
  • Длина ленты. Чем длиннее лента, тем больший ток она будет потреблять.
  • Плотность ленты, измеряется в количестве светодиодов на метр. Бывает от 30 до 120 штук, чем плотнее – тем больший ток будет потреблять при той же длине и ярче светить.

Лента всегда имеет характеристику мощности на погонный метр (Ватт/м), указывается именно максимальная мощность ленты при питании от номинального напряжения. Китайские ленты в основном имеют чуть меньшую фактическую мощность (в районе 80%, бывает лучше, бывает хуже). Блок питания нужно подбирать так, чтобы его мощность была больше мощности ленты, т.е. с запасом как минимум на 20%.

  • Пример 1: нужно подключить 4 метра ленты с мощностью 14 Ватт на метр, лента может работать на максимальной яркости. 14*4 == 56W, с запасом 20% это будет 56*1.2 ~ 70W, ближайший блок питания в продаже будет скорее всего на 100W.
  • Пример 2: берём ту же ленту, но точно знаем, что яркость во время работы не будет больше половины. Тогда можно взять блок на 70 / 2 == 35W.

Важные моменты по току и подключению:

  • Подключение: допустим, у нас подключено ленты на 100W. При 12 Вольтах это будет 8 Ампер – весьма немаленький ток! Ленту нужно располагать как можно ближе к блоку питания и подключать толстыми (2.5 кв. мм и толще) проводами. Также при создании освещения есть смысл перейти на 24V ленты, потому что ток в цепи будет меньше и можно взять более тонкие провода: если бы лента из прошлого примера была 24-Вольтовой, ток был бы около 4 Ампер, что уже не так “горячо”.
  • Дублирование питания: лента сама по себе является гибкой печатной платой, то есть ток идёт по тонкому слою меди. При подключении большой длины ленты ток будет теряться на сопротивлении самой ленты, и чем дальше от точки подключения – тем слабее она будет светить. Если требуется максимальная яркость на большой длине, нужно дублировать питание от блока питания дополнительными проводами, или ставить дополнительные блоки питания вдоль ленты. Дублировать питание рекомендуется каждые 2 метра, потому что на такой длине просадка яркости становится заметной уже почти на всех лентах.
  • Охлаждение: светодиоды имеют не 100% КПД, плюс ток в них ограничивается резистором, и как результат – лента неслабо греется. Рекомендуется приклеивать яркую и мощную ленту на теплоотвод (алюминиевый профиль). Так она не будет отклеиваться и вообще проживёт гораздо дольше.

Видео


Полезные страницы

  • Набор GyverKIT – большой стартовый набор Arduino моей разработки, продаётся в России
  • Каталог ссылок на дешёвые Ардуины, датчики, модули и прочие железки с Aliexpress у проверенных продавцов
  • Подборка библиотек для Arduino, самых интересных и полезных, официальных и не очень
  • Полная документация по языку Ардуино, все встроенные функции и макросы, все доступные типы данных
  • Сборник полезных алгоритмов для написания скетчей: структура кода, таймеры, фильтры, парсинг данных
  • Видео уроки по программированию Arduino с канала “Заметки Ардуинщика” – одни из самых подробных в рунете
  • Поддержать автора за работу над уроками
  • Обратная связь – сообщить об ошибке в уроке или предложить дополнение по тексту ([email protected])

Источник: alexgyver.ru

Как заменить светодиод в лампе освещения?

33.jpg

33.jpg

Сегодня большой популярностью пользуются светодиодные светильники. В них используются led лампочки. Бывает, что один или несколько светодиодов выходят из строя и перестают светить. Это не повод выбрасывать осветительный прибор. Лучшее решение в данной ситуации – замена светодиодов. Чтобы выполнить ремонт, необязательно обращаться к специалисту.

Узнаем, как проверить и заменить светодиод.

Как узнать какой светодиод стоит в лампе?

Светодиод – полупроводниковый прибор, создающий оптическое излучение при прохождении через него электрического тока. Чтобы заменить диоды в люстре, нужно знать их технические характеристики.

На сколько вольт бывают светодиоды?

Параметры полупроводниковых приборов зависят от материала изготовления кристалла. Узнать, на сколько вольт диоды, можно по внешним характеристикам. Обращайте внимание на цвет свечения.

В таблице указано напряжение светодиодов в зависимости от материала изготовления и цвета свечения:

Если светодиод прозрачный, определить количество вольт поможет мультиметр. Чтобы узнать напряжение, следуйте инструкции:

  • Выберите на мультиметре функцию «Проверка обрыва».
  • Щупами прикоснитесь к выходу светодиода.
  • Цвет свечения укажет на напряжение.

На какое напряжение рассчитан?

Чтобы узнать, на какое напряжение рассчитан светодиод, нужно пробовать подавать на кристалл разное напряжение, начиная от 4 В. Если полупроводниковый прибор не светится, можно повышать мощность тока вплоть до 220 В. Но помните, что это опасно. В случае ошибки велика вероятность разрушения корпуса диода.

Как заменить светодиод в лампе?

В отличие от лампочки накаливания светодиодные приборы подлежат ремонту. Рассмотрим, как поменять светодиод в лед ленте или лампе.

Еще по теме:  Мх плеер для Смарт ТВ настройка

Вначале найдите подходящий элемент. Для этого нужно отпаять аналогичный диод из другой лампы или купить новый в магазине светотехники. Диод стоит недорого.

Итак, приступим к ремонту. Нужно выполнить действия в определенной последовательности. Следуйте инструкции:

  1. Выкрутите лампу из люстры и разберите ее: отделите рассеивающее стекло. Обычно оно крепится на клей к корпусу. Чтобы его отделить, достаточно легко поддеть край кончиком ножа.
  2. Открутите плату.
  3. Найдите неисправный диод: щупами мультиметра поочередности притрагивайтесь к контактам. Рабочие кристаллы будут светиться, соответственно неисправный элемент не даст эффекта. Если дома не оказалось тестера, определить перегоревший светодиод поможет визуальный осмотр. На вышедшем из строя диоде часто появляются черные точки или характерные припухлости.
  4. Отпаяйте неисправный элемент: снимите эластичный светофильтр, используя иглу или нож. На поверхность с кристаллом нанесите припой и гелеобразный флюс, нагрейте смесь паяльником и подождите, пока диод отделится от платы. Также удалить перегоревший прибор можно с помощью термопинцета. Конечно, не у всех дома есть подобное устройство.
  5. Чтобы припаять светодиод, аккуратно удалите старый припой.
  6. Обработайте контакты нового диода флюсом и установите элемент на место отпаянного полупроводникового прибора.
  7. Паяльником соедините контакты светодиода с цепочкой.
  8. Проверьте правильность проведенных действий. Для проверки используйте мультиметр. Если тестера нет, прикрутите плату на посадочное место, вкрутите лампу в люстру и включите светильник. Когда все диоды светятся, можно ставить рассеивающее стекло на место. Ремонт прошел успешно.

Если хотите недорого купить светодиодные светильники оптом, оформите заказ в интернет-магазине Profit Light. На выбор модные многофункциональные люстры, бра и лед ленты с гарантией. При покупке онлайн осуществляется доставка по территории России.

Источник: profitlight.ru

Какие бывают светодиодные ленты и как их выбрать

Применение светодиодных лент помогло существенно разнообразить дизайн интерьеров и архитектуры. Но не каждая СДЛ подойдет, например, для подводного освещения. Важно правильно выбрать LED ленту, учитывая её функции и характеристики.

Контурная подсветка интерьера

Что такое светодиодная лента

Светодиодная лента (СДЛ) – это светоизлучающая электрическая конструкция в виде гибкой печатной платы (ленты) с равномерно нанесенными на неё источниками света – светодиодами (LED) и ограничителями электрического тока – резисторами (сопротивлениями).

Пример СДЛ

Глоссарий:

LED элемент, СД – светодиод.

Резистор – элемент электрической схемы, ограничивающий рабочий электрический ток.

Диэлектрик – материал не проводящий электрический ток.

RGB контроллер – устройство управления RGB лентой.

Микросхема – миниатюрное электронное устройство, позволяющее передавать и генерировать сигналы управления.

АКБ – аккумуляторная батарея.

БП – блок питания

SMD – светодиодный прибор, устанавливаемый на поверхность гибкой платы.

Гибкая плата – основание ленты, на которую наносятся led элементы.

Драйвер – устройство, источник рабочего электрического тока для светодиодной ленты.

Виды и типы светодиодных лент

Условно СДЛ делятся на виды, исходя из их функций и рабочих характеристик:

Монохромные

Монохромные (одноцветные) ленты характеризуются одним цветом свечения. Для достижения определенного свечения кристалл диода окрашивается в нужный цвет, что приводит к снижению яркости и напрямую сказывается на цене.

Зависимость палитры led элементов от их стоимости (указана средняя цена за 1 метр с аналогичными рабочими характеристиками):

  1. Белый цвет (CW) 145 руб./м.

Светодиодная лента белого цвета

  1. Синий цвет (B) 232 руб./м.

СДЛ синего цвета

  1. Зеленый цвет (G) 238 руб./м.

СДЛ зеленого цвета

  1. Красный цвет (R) 240 руб./м.

СДЛ красного цвета

СДЛ красного цвета

Кристаллы с белым свечением возможно применять для основного освещения, т.к. они обладают более высокой яркостью. Цветные кристаллы имеют менее яркое свечение и применяются для контурного освещения дизайна.

RGB ленты

RGB лента – это разноцветная светодиодная лента, в конструкцию которой включен контроллер, отвечающий за цветовой поток, интенсивность свечения и режим работы.

Разные оттенки получаются суммарным свечением трех кристаллов основных цветов: синий, зеленый, красный. Контроллер регулирует интенсивность свечения каждого отдельного кристалла, в результате при суммарном смешивании цветов получаются различные оттенки. В зависимости от модификации контроллера можно получить от 3 до 16 млн. оттенков палитры, кроме чисто белого цвета.

Для возможности белого свечения применяется лента типа RGBW, которая содержит led элемент белого цвета. Отдельный «белый канал» также регулируется контроллером и может работать в самостоятельном белом режиме или в общей совокупности цветов, тем самым разнообразив палитру.

Стоимость за 1 метр от 200 руб. до 1600 руб.

Применяется для реализации дизайнерских решений, например, контурная подсветка рабочей или уличной зоны.

Пример RGB подсветки лестничного проема

Ленты «бегущий огонь»

Конструкция led ленты «бегущий огонь» состоит из микросхем и контроллера. У каждой группы диодов есть своя микросхема, которая управляет цветом и яркостью свечения каждого отдельного кристалла. Сигналы о «нужном параметре» на микросхему подает контроллер, который задает нужный эффект (бегущий огонь, мерцание, переливание определенных цветов).

СДЛ бегущий огонь

Например, новогодние гирлянды, контурные подсветки в общественных заведениях.

Стоимость за 1 метр от 370 руб. до 1400 руб.

СДЛ бокового свечения

Все рассмотренные виды можно разделить на два типа:

Открытые

Открытая светодиодная лента – это плата, конструкция которой не защищена специальной оболочкой. Кристаллы данной ленты могут быть любого цвета, оттенка, конструкции и т.д.

СДЛ открытого типа

СДЛ открытого типа

Её детали находятся на открытой части, что приводит к быстрой поломке из-за внешнего механического воздействия, попадания пыли и влаги. Это обуславливает низкую цену от 70руб./м.

Применяется чаще всего в мебельной подсветке и декоративных частях интерьера. Для сохранения работоспособности и более широкой эксплуатации её укладывают в специальные защищенные каналы.

Герметичные

Герметичная лента – это открытая светодиодная лента с нанесенным на неё герметичным диэлектрическим составом. Такая конструкция защищает кристаллы, резисторы, проводящие части платы и увеличивает срок её эксплуатации.

Показатель защищенности IP XZ характеризует степень защиты конструкции от внешних частиц и твердых предметов (X), и влаги (Z). Чем выше показатели XZ, тем лучше защита.

СДЛ открытого типа имеет показатель IP20, герметичная – IP68.

Степени защищенности светодиодной ленты

Степени защищенности светодиодной ленты

От толщины нанесенного состава зависит степень защищенности:

  1. IP33 – защита от крупных внешних элементов, влаги и брызг воды направленных под углом 60 гр.;
  2. IP65 – защита от частичек пыли, влаги и струи воды независимо от их направления;
  3. IP67 – защиты от частичек пыли, влаги и воды при погружении в неё на глубину 1 м.

Высокая степень защиты от влаги позволяет применять герметичные платы для подсветки бассейнов, водоемов, бань и сауны.

СДЛ герметичного типа

СДЛ герметичного типа

Стоимость за 1 метр составляет от 180 до 1600 руб.

Еще по теме:  Для ТВ какая ляля

Устройство

Конструкция монохромной светодиодной ленты

Конструкция монохромной светодиодной ленты

Конструкция монохромной светодиодной ленты:

  • гибкая печатная плата выполнена из диэлектрического материала толщиной 2-3 мм, ширина 8-20 мм. На одной из сторон нанесены токоведущие линии, соединяющие рабочие элементы, на второй – самоклеящаяся поверхность для крепления к поверхности.
  • SMD диод устанавливаемый на поверхность платы таким образом, чтобы угол рассеивания света составлял 120 градусов.
  • Ограничивающий резистор.
  • Питающие провода.

Принципиальная электрическая схема led платы

Принципиальная электрическая схема led платы

Принципиальная электрическая схема led платы представляет собой параллельно соединенные участки. Каждый из участков состоит из трех SMD элементов и резистора, последовательно соединенных между собой. Вся цепочка запитывается от одного источника питания.

Принцип работы

Каждый из трех диодов потребляет напряжение 3,2 В, т.к. они соединены последовательно то для их питания необходимо 9,6 В. На указанный участок подается напряжение питания 12 В.

Для того, чтобы не произошло пробоя диодов в цепь включается ограничивающий резистор. Его значение выбирается таким образом, чтобы ток в цепи соответствовал рабочему току диодов.

При правильно собранной схеме светодиоды загораются при подаче напряжения (включения в сеть или от АКБ).

Характеристики светодиодных лент

  • Мощность

Мощность СДЛ напрямую зависит от типа используемых CMD диодов и плотности их размещения (установленное количество на 1 метр).

Тип светодиодаКоличество светодиодов на 1 мПотребляемая мощность 1 м ленты
SMD 3528 60 шт. 4.8 Вт
SMD 3528 120 шт. 9.6 Вт
SMD 3528 240 шт. 19.2 Вт
SMD 5050 30 шт. 7.2 Вт
SMD 5050 60 шт. 15 Вт
SMD 5050 120 шт. 25 Вт

Зная потребляемую мощность СДЛ можно выбрать мощность блока питания (БП), которая выбирается с учётом 20% запаса.

  • Рабочее напряжение

Светодиодные элементы работают от стабильного постоянного напряжения значением 12, 24 или 36 Вольт. Для получения такого уровня напряжения используется led-драйвер, который преобразует переменное напряжение 220 В в постоянное с необходимым уровнем рабочего напряжения.

Led драйвер на 24 В

Led драйвер на 24 В

Значение рабочего (питающего) напряжения указывается в характеристиках СДЛ. При подаче большего значения кристаллы выйдут из строя, при подаче меньшего – не загорятся или будут излучать тусклый свет.

Существует модификация СДЛ, работающей от сети 220 В. Её применение в домашних условиях не безопасно. Чаще всего такие СДЛ применяются в местах с высокой степенью защиты (например, декоративное уличное освещение).

Схемы управления led лент

Управление схемами производиться с использованием:

  1. RGB – контроллер. Прибор задает режим работы RGB ленты (мигание, переливание определенного цвета, поочередная смена оттенков). Сигнал управления контроллера распространяется на платы длиной от 5 до 10метров. Управление приборов возможно с пульта управления (ПУ) или локально.
  2. RGB – усилитель. Прибор применяется при использовании платы длиной свыше 10 метров. В данном случае усилитель дублирует сигнал контроллера или диммера и посылает его по всей длине платы.
  3. Диммер. Это электрическое устройство, работающее по принципу резистора (ограничителя). Оно изменяет мощность в цепи, тем самым контролирует интенсивность свечения диодов.

Рассмотрим работу этих устройств на примере схемы подключения светодиодной ленты с диммером и усилителем:

Схема подключения СДЛ с диммером и усилителем

Схема подключения СДЛ с диммером и усилителем

Схема состоит из:

  1. Блока питания диммера.
  2. Блок питания RGB-усилителя.
  3. Диммер. К выходу устройству параллельно подключены две ветви СДЛ длиной по 5 метров. Третья ветвь, также параллельно уходит на вход усилителя. При подключении всех элементов важно соблюдать полярность.
  4. RGB – усилитель. К его выходу параллельно подключены три ветви СДЛ длиной по 5 метров.
  1. На БП поступает переменное напряжение 220 В, затем преобразуется и на вход диммера поступает постоянное напряжение 12/24 В.
  2. Диммер подает сигнал на уменьшение яркости светодиодов.
  3. Сигнал передается на две ветви, суммарная длина которых составляет 10 метров. Мощности диммера не хватает на передачу сигнала оставшимся трем ветвям (15 метров).
  4. Одновременно сигнал на уменьшение яркости передается от диммера к усилителю.
  5. Усилитель передает этот же сигнал, но с большей мощность на оставшиеся три ветви.
  6. Интенсивность свечения диодов по всей длине СДЛ снижается. Аналогично передается сигнал на повышение яркости.

В схеме с усилителем и контроллером подобный принцип действия, разница лишь в том, что сигнал на RGB ленту передается каждому цвету по своей дорожке.

Как пользоваться светодиодной лентой

При использовании СДЛ важно правильно рассчитать мощность блока питания, контроллера, усилителя и подключить его к плате соблюдая полярность. На собранную схему, через подключенную в розетку вилку, подается напряжение, кристаллы загораются.

Существуют СДЛ со встроенным блоком питания (контроллером/усилителем). В этом случае достаточно подать напряжение путем подключения вилки в розетку. Диоды загораются.

Выбор светодиодной ленты

  1. Для подсветки домашнего/офисного интерьера в помещении достаточно открытой ленты IP20 мощностью до 10 Вт/м. Если такая плата выполняет функцию освещения мощность увеличивается до 14 Вт/м. Рабочее напряжение составляет 12/24 В.
  2. Для подсветки в местах с повышенной влажностью (ванная комната, крытый бассейн, баня) используют СДЛ со степенью защиты IP 54 и выше. Рабочее напряжение составляет 12/24 В.
  3. В местах с повышенной влажностью (подводная подсветка бассейна, уличный пруд, уличная контурная подсветка) применяют СДЛ со степенью защиты IP 67/68. Рабочее напряжение составляет 12 В для подводного освещения, в случае уличного освещения возможно подключение герметичной СДЛ напрямую к сети 220 В.

Важно знать мощность ленты, т.к. при её значении больше 10 Вт/м необходимо устанавливать дополнительный алюминиевый профиль по всей длине для теплоотвода. Это продлит срок службы диодов и защитит от перегрева.

Остальные показатели (цвет подложки и свечение, яркость) определяются «по вкусу» или дизайнерскому проекту.

Вывод

Использование СДЛ позволяет подчеркнуть предметы интерьера (лестницы, кухонные гарнитуры, потолки, выступы и т.д.) Их низкая цена и большой выбор видов позволяет создавать различные сценарии освещения.

При использовании конструкции с питанием от переменного напряжения 220 В необходимо соблюдать правила электробезопасности и максимально изолировать токоведущие части. Запрещено использование led элементов напряжением выше 12 В для подводного освещения.

Преимущества

  • Безопасный уровень рабочего напряжения 12/24 В.
  • Наличие самоклеящегося слоя упрощает работы по монтажу и позволяет установить её в любом ровном месте.
  • Низкий уровень потребления электрической энергии.
  • Долгий срок службы и уровень надежности при соблюдении правил эксплуатации.
  • Для регулировки длины платы предусмотрены специальные места, в которых можно её отрезать или нарастить (припаять).
  • Экологически безопасно.
  • Широкий выбор палитры.

Недостатки

  • Применение в схеме дополнительных элементов (драйвер).
  • Высокая цена за комплект оборудования для реализации основного освещения. Как следствие применение в качестве подсветки.

Источник: vamfaza.ru

Оцените статью
Добавить комментарий