Передача ТВ сигнала по оптике

Способы передачи сигналов различного типа, данных и команд управления по оптоволоконным линиям связи начали активно внедряться в последнее десятилетие прошедшего века. Однако достаточно долго они не могли составить серьезной конкуренции (по крайней мере, в сегменте ТСБ) коаксиальному кабелю и витой паре.

Несмотря на такие недостатки, как высокие сопротивление и емкость, что существенно ограничивает дальность передачи сигнала, коаксиальный кабель и витая пара превалировали в системах безопасности. Сегодня ситуация начинает меняться, причем рискну утверждать, что перемены эти кардинальные. Нет, в небольших системах, где видео и сигналы управления требуется передавать на небольшие расстояния, коаксиальный кабель и витая пара по-прежнему незаменимы. В крупных и особенно распределенных системах у оптоволокна альтернативы практически нет.
Дело в том, что оптоволоконное оборудование сегодня стало гораздо доступнее по цене и тенденция к его дальнейшему удешевлению достаточно устойчива.

ТВ сигнал из потока по оптике в аналоговое


Так что волоконная оптика в настоящее время дает возможность предложить заказчику систем безопасности не только надежное, но и экономически выгодное решение. Использование светового луча для передачи сигнала, широкая полоса пропускания позволяют передавать сигнал высокого качества на значительные расстояния без использования усилителей и повторителей.
Основными преимуществами использования волоконной оптики, как известно, являются:
– более широкая полоса пропускания (до нескольких гигагерц), чем у медного кабеля (до 20 МГц);
– невосприимчивость к электрическим помехам, отсутствие «земляных петель»;
– низкие потери при передаче сигнала, ослабление сигнала составляет около 0,2–2,5 дБ/км (для коаксиального кабеля RG59 – 30 дБ/км для сигнала 10 МГц);
– не вызывает помех в соседних «медных» или других оптоволоконных кабелях;
– большая дальность передачи;
– повышенная безопасность передачи данных;
– хорошее качество передаваемого сигнала;
– оптоволоконный кабель миниатюрен и легок.

Принцип работы оптоволоконной линии
Волоконная оптика -–технология, в которой в качестве носителя информации используется свет, и не важно, о каком типе информации идет речь: аналоговом или цифровом. Обычно используется инфракрасный свет, а средой передачи служит стекловолокно.
Оптоволоконное оборудование может использоваться для передачи аналогового или цифрового сигнала различных типов.
В простейшем варианте исполнения оптоволоконная линия связи состоит из трех компонентов:
– волоконно-оптического передатчика для преобразования входного электрического сигнала от источника (например, видеокамеры) в модулированный световой сигнал;
– оптоволоконной линии, по которой световой сигнал передается на приемник;
– волоконно-оптического приемника, преобразующего сигнал в электрический, практически идентичный сигналу источника.
Источником распространяемого по оптическим кабелям света является светодиод (LED) (или полупроводниковый лазер – LD). На другом конце кабеля принимающий детектор преобразует световые сигналы в электрические. Волоконная оптика опирается на особый эффект – преломление при максимальном угле падения, когда имеет место полное отражение.

ПЕРЕДАЧА СИГНАЛОВ ЧЕРЕЗ ОПТОВОЛОКНО.

Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Внутренняя жила (нить) оптоволоконного кабеля имеет более высокий показатель преломления, чем оболочка. Поэтому луч света, проходя по внутренней жиле, не может выйти за ее пределы из-за эффекта полного отражения (рис. 1).Таким образом, транспортируемый сигнал идет внутри замкнутой среды, проделывая путь от источника сигнала до его приемника.
Остальные элементы кабеля лишь предохраняют хрупкое волокно от повреждений внешней средой различной агрессивности.

Рис. 1 Волоконная оптика основывается на эффекте полного отражения

Физические параметры оптических волокон
Все распространенные типы волокон характеризуются двумя важнейшими параметрами: затуханием и дисперсией.
Различают модовую и материальную дисперсии – искажения сигнала, вызванные особенностями распространения световых волн в среде.
Материальная дисперсия вызвана тем, что волны различной длины распространяются с различной скоростью, что связано с особенностями физического строения волокна. Данный эффект особенно заметен при использовании одномодового волокна. Уменьшение ширины полосы излучения источника и выбор оптимальной длины волны приводит к уменьшению материальной дисперсии.
Модовая дисперсия проявляется в многомодовом волокне из-за разницы длин путей, проходимых лучами различных мод. К ее уменьшению приводит уменьшение диаметра сердечника волокна, сокращение числа мод и применение волокна с градиентным профилем.
Затухание сигнала в оптоволоконном кабеле зависит от свойств материала и от внешних воздействий. Затухание характеризует потерю мощности передаваемого сигнала на заданном расстоянии, и измеряется в дБ/км, где децибел – логарифмическое выражение отношения мощности, выходящей из источника Р1, к мощности, входящей в приемник Р2, дБ = 10*log(P1/P2). Потери в 3 дБ означают, что половина мощности потеряна. Потеря 10 дБ означает, что только 1/10 мощности источника доходит до приемника, потери 90%. Волоконно-оптические линии, как правило, способны нормально функционировать при потерях в 30 дБ (прием всего 1/1000 мощности).
Есть два принципиально различных физических механизма, вызывающих данный эффект. Потери на поглощение. Связаны с преобразованием одного вида энергии в другой. Электромагнитная волна определенной длины вызывает в некоторых химических элементах изменение орбит электронов, что, в свою очередь, ведет к нагреву волокна. Естественно, что процесс поглощение волны тем меньше, чем меньше ее длина и чем чище материал волокна.
Потери на рассеяние. Причина снижения мощности сигнала в этом случаезначает выход части светового потока из волновода. Обусловлено это неоднородностями показателя преломления материалов. И с уменьшением длины волны потери рассеивания возрастают.

Еще по теме:  Россия ТВ кто хочет стать миллионером

Рис. 2 Окна прозрачности оптических волокон

В теории лучших показателей общего затухания можно достичь на пересечении кривых поглощения и рассеивания. Реальность несколько сложнее и связана с химическим составом среды. В кварцевых волокнах (SiO2) кремний и кислород проявляют активность на определенной длине волны и существенно ухудшают прозрачность материала в двух окрестностях.
В итоге образуются три окна прозрачности (рис. 2), в рамках которых затухание имеет наименьшее значение. Самые распространенные значения длины волны:
0,85 мкм;
1,3 мкм;
1,55 мкм.
При аналоговой передаче чаще используются длины волн – 850 и 1310 мкм.
Именно под такие диапазоны разработаны специальные гетеролазеры, на которых основываются современные ВОЛС (волоконно-оптические системы связи).
В настоящее время оптоволокно с такой характеристикой уже считается устаревшим. Достаточно давно освоен выпуск оптоволокна типа AllWave ZWP (zero water peak, с нулевым пиком воды), в котором устранены гидроксильные ионы в составе кварцевого стекла. Такое стекло имеет уже не окно, а проем в диапазоне от 1300 до 1600 нм.
Все окна прозрачности лежат в инфракрасном диапазоне, т. е. свет, передающийся по ВОЛС, не виден глазу. Стоит заметить, что в стандартное оптоволокно можно ввести и видимое глазом излучение. Для этого применяют либо небольшие блоки, присутствующие в некоторых рефлектометрах, либо даже слегка переделанную китайскую лазерную указку.

С помощью таких приспособлений можно находить переломы в шнурах. Там, где оптоволокно сломано, будет видно яркое свечение. Такой свет быстро затухает в волокне, так что использовать его можно только на коротких расстояниях (не более 1 км).

Аналоговая передача

В простейших передатчиках видеосигнала используется амплитудная модуляция (AM): интенсивность излучаемого света меняется пропорционально изменению амплитуды видеосигнала. Для получения более устойчивого результата, увеличения расстояния передачи сигналов, достижения лучшего соотношения сигнал/шум применяется частотная модуляция (FM).
Амплитудная модуляция (AM) – вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда. Интенсивность излучаемого света меняется пропорционально изменению амплитуды видеосигнала. Так как контролировать интенсивность излучения на высоком уровне достаточно трудно, даже небольшие ее изменения вносят значительные искажения в передаваемый сигнал.
Частотная модуляция (ЧМ) – вид аналоговой модуляции, при котором информационный сигнал управляет частотой световых импульсов. По сравнению с амплитудной модуляцией амплитуда остается постоянной.
Аналоговый способ применяется для передачи видео и аудиосигналов, сигналов управления, 10/100М Ethernet, контроля состояния контактов.
При этом надо заметить, что для передачи видео или аудиоинформации аналоговые устройства не самый удачный выбор. Передавать и принимать ее по ВОЛС с помощью аналогового оборудования бывает достаточно сложно. К тому же ценовые различия между аналоговым и аналогичным цифровым оборудованием незначительны.
Оборудование данного типа присутствует в ассортименте многих игроков рынка, с некоторыми моделями читатели смогут ознакомиться в обзорной части статьи.

S732DV (GE Security, Fiber Option)
Комплект аналоговых приемопередатчиков предназначен для передачи видео и данных по 1-му одномодовому или многомодовому оптоволокну на расстояние до 60 км. Отличительными особенностями устройства являются широкий диапазон рабочих температур ( от -40 С до +75 С), технологии Plug-and-Play, CWDM, SMARTSä диагностика, позволяющая производить тестирование системы в режиме реального времени. На оборудование предоставляется гарантия 5 лет.

DE7400 (GE Security, серия EtherNAVä линейки IFS)

Серия 2-портовых приемопередатчиков рассчитана на передачу и прием данных со скоростями 10/100/1000 Мбит/с по многомодовому, одномодовому оптоволокну или по электрическому кабелю Cat 5. DE7400 отличается повышенной климатической защитой для работы при крайних значениях температуры (от -40 С до +85 С). Стандартной функцией является срабатывание контактов для инициирования удаленной тревоги при потере оптической связи.

На коннекторе RJ-45 имеются светодиодные индикаторы статуса питания и скорости передачи данных. А также поддерживает протоколы RSTP, QoS/CoS, IGMP, VLAN, SNMP. Поддерживает стандарты IEEE 802.3, что делает возможным подключение любых устройств организации локальных сетей. На оборудование предоставляется пожизненная гарантия.
В линейке оборудования IFS имеется оборудование с различной комплектацией портов.

Приемник/передатчик OVT/OVR-1 («БИК-Информ»)
Аппаратура серии OVT/OVR-1(приемник/передатчик) предназначена для передачи аналоговых видеосигналов в реальном времени в системах видеонаблюдения на промышленных и протяженных объектах. Устройство позволяет передавать высококачественный цветной и ч/б видеосигналы по многомодовому оптическому волокну на расстояние до 5 км в полосе частот 25 Гц – 10 мГц при соотношении сигнал/шум не менее 5 дБ.

Оборудование отличается высокой помехозащищенностью. Имеется встроенный генератор тестовых сигналов, системы АРУ (автоматическая регулировка уровня по уровню синхросигнала), низкое потребление тока – не более 85мА для передатчика и 75мА для приемника. Компактные размеры, позволяют размещать устройства как в монтажных шкафах на DIN-рейку, так и в небольших коммутационных коробках. Аппаратура не требует дополнительных настроек и может эксплуатироваться в диапазоне температур от -40 °C до +50 °C.

SFS10-100/W-80 (SFT предоставляется гарантия сроком на 3 года.

SVP-11T/12R
SVP-13T/14R («Спецвидеопроект»)
Устройства предназначены для передачи сигнала в системах телевизионного наблюдения на расстояния до 6–12 км. Комплекты из передатчика и приемника обеспечивают передачу одного композитного видеосигнала по многомодовому оптическому кабелю на длине волны 850 и 1310 нм.
Разрешение видеосигнала – 570 ТВЛ, отношение сигнал/шум на предельной дальности – не хуже 50 дБ, полоса частот: 50 Гц – 8 МГц. Система автоматической регулировки усиления постоянно поддерживает на выходе размах видеосигнала 1 В. Световая сигнализация показывает наличие или отсутствие видеосигнала. Устройства имеют малые габариты, низкое энергопотребление, снабжены элементами настенного крепления.
Устройства защищены от переполюсовки питания – при неправильном включении не выходят из строя. Работают в режиме plug and play – настройка и регулировка при их установке не требуется.
Приемники сигналов исполняются также в корпусе, предназначенном для установки в стандартные 19” стойки.

Еще по теме:  Лучшие фильмы ужасов на окко

SVP-21T
SVP-22T («Спецвидеопроект»)

Передатчики видеосигнала по оптоволокну SVP-21T и SVP-22T предназначены для работы с камерами телевизионного наблюдения вне помещений. Герметичный кожух оснащен гермовводами и имеет степень защиты от атмосферных воздействий IP66. Рабочая температура от -35 до +50 °С. Сигнал передается на большие расстояния: до 6–12 км.
Передатчики SVP-21T и SVP-22T в комплекте с приемниками SVP-12R, SVP-14R, SVP-12-2Rack, SVP-14-2Rack обеспечивают передачу одного композитного видеосигнала по многомодовому оптическому кабелю на длине волны 850 и 1310 нм. Устройства выпускаются с питанием от сети переменного тока с напряжением 220 В или 24 В. Работают в режиме plug and play – настройка и регулировка при их установке не требуется. Система автоматической регулировки усиления в приемниках постоянно поддерживает на выходе размах видеосигнала 1 В.
В гермокорпусе имеется свободное пространство для кроссировки кабеля другого оборудования. Габаритные размеры: 200 х 150 х 55 мм.

Источник: Журнал ТЗ № 1 2010

Источник: www.aktivsb.ru

Оптические передатчики

Оптический передатчик видеосигнала 1310 Нм 20 мВт

bool(false) [«NavTitle»]=> string(12) «Товары» [«NavRecordCount»]=> string(2) «18» [«NavPageCount»]=> float(1) [«NavPageNomer»]=> int(1) [«NavPageSize»]=> int(21) [«bShowAll»]=> bool(false) [«NavShowAll»]=> bool(false) [«NavNum»]=> int(1) [«bDescPageNumbering»]=> bool(false) [«add_anchor»]=> string(0) «» [«nPageWindow»]=> int(5) [«bSavePage»]=> bool(false) [«sUrlPath»]=> string(61) «/catalog/televizionnoe-oborudovanie/peredatchiki-opticheskie/» [«NavQueryString»]=> string(0) «» [«sUrlPathParams»]=> string(62) «/catalog/televizionnoe-oborudovanie/peredatchiki-opticheskie/?» [«nStartPage»]=> int(1) [«nEndPage»]=> float(1) [«NavFirstRecordShow»]=> int(1) [«NavLastRecordShow»]=> string(2) «18» > syspagi —>

int(442) [1]=> int(907) [2]=> int(11089) [3]=> int(11087) [4]=> int(13748) [5]=> int(11088) [6]=> int(13479) [7]=> int(13753) [8]=> int(908) [9]=> int(11067) [10]=> int(13478) [11]=> int(13481) [12]=> int(11064) [13]=> int(906) [14]=> int(13477) [15]=> int(11065) [16]=> int(11066) [17]=> int(13482) > —>

Популярные товары из раздела Оптические передатчики :

Оптический передатчик ТВ сигнала 1310 Нм 26 мВт

Оптический передатчик видеосигнала 1310 Нм 20 мВт

от 60 480,00 Р

Оптический передатчик TRX-0015E-2x10

Оптико-волоконный передатчик TRX-0013-20

от 62 726,40 Р

Передатчик оптический для сетей КТВ ОК ПЛАНАР SOT-02-00

от 154,00 Р

Оптоволоконный передатчик ВОЛС TRX-0013-24

от 105 600,00 Р

КТВ-передатчики 1310

Оптический передатчик сетей кабельного телевидения (КТВ) служит для формирования оптико-волоконного сигнала ВОЛС, промодулированного электрическим телевизионным сигналом, с целью передачи полученного светового сигнала по оптоволокну.

Передатчик оптический OT8620 1310 Нм 20 мВт передняя панель

Раньше в качестве источника оптического излучения в передатчиках широко использовались светодиоды. Это сравнительно простое в реализации и недорогое решение для передачи по многомодовому волокну информации на сравнительно небольшие расстояния и с невысокой скоростью (до 1 Гбит/с).

Однако возрастающие требования к телевизионному оборудованию в общем и к оптическим передатчикам КТВ в частности привели к тому, что теперь в них главным образом применяются полупроводниковые лазеры, а именно:

  • FP-лазер (Fabry-Perot) — с резонатором Фабри-Перо;
  • DFB-лазер (Distributed Feedback) — с распределенной обратной связью;
  • DBR-лазер (Distributed Bragg Reflector) с распределенным брэгговским отражением;
  • VCSEL (Vertical Cavity Surface Emitting Laser) — поверхностно-излучающий лазер с вертикальным резонатором (вертикально излучающий лазер).

Указанные здесь в порядке их совершенствования конструктивные решения полупроводниковых лазеров направлены на получение источников излучения. Они обеспечивают максимально эффективную и с минимальными искажениями передачу видеосигналов по одномодовому оптоволокну.

Тип модуляции

В зависимости от принципа модуляции передатчики бывают 2-х типов:

  • с внутренней (прямой) модуляцией;
  • с внешней модуляцией.

В случае прямой модуляции ток лазерного диода изменяется в соответствии с формой телевизионного сигнала, влияя таким образом на интенсивность оптической несущей. Метод применяется с FP-лазерами на скоростях до 2,5 Гбит/с. Достоинство такого решения — простота; недостаток — наличие паразитной частотной модуляции (Chirp эффект), расширяющей спектр излучения и уменьшающей дальность передачи видеосигналов.

передатчик SOT-03 Планар

При использовании внешней модуляции выходная мощность лазера поддерживается постоянной; сигнал с его выхода поступает на внешний электрооптический модулятор Маха-Цендера.

Вне зависимости от типа модуляции, стремление скорректировать нелинейность модуляционной характеристики при значительных индексах модуляции OMI (Optical Modulation Index) приводит к вводу предискажения.

Радиотехнические параметры передатчиков

В технических характеристиках указываются следующие параметры:

  • диапазон частот группового ТВ-сигнала – как правило, (47… 862) МГц;
  • неравномерность АЧХ радиотракта (например, ±0,75 дБ);
  • допустимые пределы изменения входного цифрового TV-сигнала;
  • интермодуляционные искажения для композитных биений второго порядка CSО (Composite Second Order) и третьего порядка СTB (Composite Tripple Beat), дБ;
  • отношение несущая/шум CNR (Carrier to Noise Ratio), дБ;
  • эффективность работы АРУ (AGC — Automatic Gain Control);
  • пределы ручной регулировки усиления РРУ (MGC — Manual Gain Control);
  • возвратные потери (затухание несогласованности), дБ;
  • входное сопротивление (как правило, 75 Ом);
  • тип высокочастотного разъема.

Оптический передатчик 1310 нм 10 мВт

В некоторых моделях имеется специальный отвод (ослабление входного сигнала на этом отводе обычно составляет 20 дБ).

Оптические параметры

  • выходная оптическая мощность, дБм;
  • в зависимости от длины волны различают оптоволоконные передатчики 1310 и 1550 — для 1310 нм излучаемая мощность составляет (5… 15) дБм, для 1550 нм излучаемая мощность находится в пределах (6… 9) дБм;
  • RIN (Relative Intensity Noise) – относительный шум интенсивности, дБ (степень флуктуации мощности лазера в зависимости от интенсивности излучения);
  • минимальный коэффициент возвратных потерь, дБ;
  • тип оптического разъема.

Конструктивные особенности

Конструкция многих передатчиков допускает размещение их в 19″-стойках. С целью повышения отказоустойчивости приборов используется резервирование источника питания (с автоматическим включением).

Для контроля уровня модуляции на передней панели устройства размещается ЖК-дисплей; возможно также дистанционное управление и удаленный мониторинг.

Еще по теме:  Тихий дон на ТВ когда

Передатчик оптический OT8620 1310 Нм 20 мВт задняя панель

В некоторых моделях температура внутри корпуса поддерживается автоматически (что положительно сказывается на работе полупроводникового лазера).

Источник: lan-art.ru

Принцип преобразования и передачи информации по оптоволокну

Современные линии связи, предназначенные для передачи информации на большие расстояния, часто представляют собой именно волоконно-оптические линии, в силу достаточно высокой эффективности данной технологии, которую она на протяжении многих лет успешно демонстрирует, например — в качестве средства обеспечения широкополосного доступа в Интернет.

Оптоволоконный кабель для Интернета

Само волокно состоит из стеклянной сердцевины, окруженной оболочкой с меньшим чем у сердцевины показателем преломления. Световой луч, отвечающий за передачу информации по линии, распространяется по сердцевине волокна, отражается на своем пути от оболочки, и таким образом не выходит за пределы передающей линии.

Источником света для формирования луча обычно служит диодный или полупроводниковый лазер, тогда как само волокно, в зависимости от диаметра сердцевины и распределения показателя преломления, может быть одномодовым или многомодовым.

Оптическое волокно в линиях связи превосходит электронные средства связи, позволяя с высокой скоростью и без потерь транслировать цифровые данные на огромные расстояния.

Принципиально оптоволоконные линии могут образовывать самостоятельную сеть, либо служить для объединения уже существующих сетей — участков магистралей оптических волокон, объединенных физически на уровне световода, либо логически — на уровне протоколов передачи данных.

Скорость передачи данных по ВОЛС может измеряться сотнями гигабит в секунду, как например стандарт 10 Гбит Ethernet, используемый на протяжении многих лет в современных телекоммуникационных структурах.

Процесс передачи оптического сигнала на расстояние

Годом изобретения оптоволокна считается 1970-й, когда Питер Шульц, Дональд Кек и Роберт Маурер — ученые из компании Corning — изобрели оптическое волокно с низким уровнем потерь, открывшее возможность дублировать проводную передающую систему телефонного сигнала без использования ретрансляторов. Разработчики создали проводник, позволяющий сохранить 1% мощности оптического сигнала на расстоянии 1 километра от источника.

Для технологии это был переломный момент. Изначально линии были рассчитаны на одновременную передачу сотен световых фаз, позже было разработано однофазное волокно большей производительности, способное сохранять сигнал целостным на большем расстоянии. Однофазное волокно с нулевым смещением длины волны, с 1983 года и по сей день, является наиболее востребованным типом оптоволокна.

Для передачи данных через оптоволокно, сигнал должен быть сначала преобразован из электрического вида в оптический, затем передан по линии, а после — преобразован в приемнике обратно в электрический. Все устройство называется приемопередатчиком, и включает в себя не только оптические, но и электронные компоненты.

Итак, первый элемент волоконно-оптической линии — оптический передатчик. Он преобразует последовательность данных, подаваемых в электрической форме — в оптический поток. В передатчик входят: параллельно-последовательный преобразователь с синтезатором синхроимпульсов, драйвер и источник оптического сигнала.

Источником оптического сигнала может выступать лазерный диод или светодиод. В системах телесвязи обычные светодиоды не используются. Ток смещения и модулирующий ток для прямого модулирования лазерного диода подается с лазерного формирователя. Далее уже свет подается через оптический соединитель — в волокно оптического кабеля.

На другой стороне линии сигнал и синхросигнал обнаруживаются оптическим приемником (прежде всего — фотодиодным датчиком), где они преобразуются в электрический сигнал, который усиливается, а затем восстанавливается форма переданного сигнала. В частности, поток последовательных данных может быть преобразован в параллельный.

За преобразование асимметричного тока с фотодиодного датчика в напряжение, за его последующее усиление и преобразование в дифференциальный сигнал, — отвечает предусилитель. Микросхема синхронизации и восстановления данных восстанавливает синхросигналы и их тактирование из принимаемого потока данных.

Мультиплексор с разделением времени позволяет достичь скорости передачи данных до 10 Гб/сек. Так, сегодня существуют следующие стандарты скорости передачи данных по оптоволоконным системам:

Стандарты передачи

Еще больше повысить плотность передачи данных позволяют спектральное уплотнение и мультиплексное разделение длины волны, когда несколько мультиплексных потоков данных посылаются по одному каналу, но каждый поток на своей длине волны.

Одномодовое волокно отличается достаточно малым внешним диаметром сердечника — около 8 мкм. Такое волокно позволяет распространять через себя один единственный луч конкретной частоты, соответствующей характеристикам данного волокна. Когда луч идет один, исчезает проблема межмодовой дисперсии, в результате повышается производительность линии.

Плотность распределения материала может быть градиентной или ступенчатой. Градиентное распределение позволяет добиться более высокой производительности. Одномодовая технология тоньше и дороже многомодовой, но именно одномодовая технология применяется в настоящее время в телекоммуникациях.

Устройство оптоволоконного кабеля

Многомодовое волокно позволяет одновременно распространять несколько лучей, вводимых в него для передачи под разными углами. Диаметр сердцевины обычно составляет 50 или 62,5 мкм, так что ввод оптического излучения облегчается. Стоимость приемо-передатчиков ниже чем для одномодовых.

Именно многомодовое оптоволокно хорошо подходит для небольших домашних и локальных сетей. Явление межмодовой дисперсии считается главным недостатком многомодового оптоволокна, так что для снижения этого вредного явления специально были разработаны волокна с градиентным показателем преломления, чтобы лучи распространялись по параболическим траекториям, и разность их оптических путей была меньше. Так или иначе, пропускная способность у одномодовой технологии все равно остается выше.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник: electricalschool.info

Оцените статью
Добавить комментарий