Принцип работы tft проектора

Виды:
1. Пассивный. На ЖК ячейу подавался потенциал. Они очень медленные. Использовались например в калькуляторах.
2. Активный TFT (на тонкопленочных транзисторах) на каждый пиксель подходит отдельное питание через транзистор, и отдельное управление на каждый транзистор. Время отклика намного меньше.

В матрице имеются строчные и столбцовые драйвера. Выводы их могут быть в виде ушей, могут располагаться непосредственно на стекле или на шлейфах.

Матрицей могут называть либо всю панель в сборе, либо только непосредственно матрицу.

Матрица разбита на пиксели. Условно пиксель это одна ячейка информации, состоящая из 3 субпикселей (синего, крсаного и зеленого).

Располагаться пиксели могут тремя разными способами:
1. Strip
2. Mosaic
3. Delta

Разрешение матрицы считают обычно в пикселях по вертикали и горизонтали.

Структура матрицы:

Технологии ЖК (LCD) матриц для современных мониторов

Эффект жидкого кристалла был открыт в 1888 году. Жидким кристаллом называют текучее вещество с кристаллической структурой. Жидкие кристаллы обладают уникальными оптическими свойствами, поэтому их используют при изготовлении матриц для жк-мониторов.

Технология DLP

Матрица — это основная деталь жк-монитора, которая непосредственно формирует изображение на экране. Качество изображения любого ЖК (LCD) монитора, в первую очередь, зависит от встроенной в него матрицы.

LCD — жидкокристаллический дисплей (ЖК).

Матрицы на основе жидких кристаллов используются не только в компьютерных мониторах, они широко применяются в различных электронных устройствах, таких как: телевизоры , фото-, видео- камеры, ноутбуки, планшеты, сканеры, смартфоны, телефоны, автомобильные навигаторы, электронные книги, плееры, часы, термометры и прочие.

Текстура LCD (ЖК) матрицы

TFT-матрицы

TFT-матрица — матрица на основе тонкоплёночных транзисторов.

В различных электронных устройствах применяются разные типы TFT-матриц. Компьютерные LCD (ЖК) мониторы, в том числе экраны ноутбуков, планшетов и смартфонов, как правило, комплектуются TFT-матрицами следующих типов: TN, VA, MVA, PVA, IPS, PLS. Все они управляется тонкоплёночными транзисторами (TFT) и отличаются друг от друга принципиальными технологическими решениями.

Каждый пиксель на экране управляется тремя транзисторами, соответствующими основным цветам RGB (красному, зеленому и синему). Если включен только один из этих трёх транзисторов образуется субпиксель. Так называемые «битые» пиксели появляются при выходе из строя этих транзисторов. На разных типах TFT-матриц битые пиксели выглядят по-разному, например на TN-матрицах они светятся, образуя белые точки, а на IPS-матрицах — чёрные.

TN и TN + film

TN-TFT — технология выполнения LCD (ЖК) матрицы, когда кристаллы, при отсутствии напряжения, поворачиваются друг к другу под углом 90° в горизонтальной плоскости между двумя пластинами. Кристаллы расположены по спирали, и в итоге при подаче максимального напряжения кристаллы поворачиваются таким образом, что при прохождении света через них образуются черные пиксели. Без напряжения — белые.

Наглядная демонстрация работы проекционной технологии 3LCD на примере Epson EMP-TW750

Качество цветопередачи матриц TN-TFT — довольно посредственное. На таких матрицах пиксели имеют неоднородное свечение, в результате чего искажаются цвета. Это особенно заметно при изменении угла наблюдения (особенно по вертикали). С другой стороны матрицы TN + film (Twisted Nematic + film), или просто TN — самые быстрые по отклику и дешевые в производстве.

LCD-мониторы, оснащённые TN-матрицами отлично подходят для работы с текстовыми документами, просмотра фильмов и компьютерных игр. Так же, TN-матрицы наиболее часто используются в мобильных и портативных устройствах из-за их малой энергоёмкости.

Еще по теме:  Ночник астронавт проектор инструкция на русском

VA/MVA/PVA

Технология VA (сокр. от vertical alignment — вертикальное выравнивание) была разработана компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка.

Наследницей технологии VA стала технология MVA (Multi-domain Vertical Alignment), также разработанная компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176—178°), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика. Они значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

Достоинствами технологии MVA являются глубокий чёрный цвет (при перпендикулярном взгляде) и отсутствие как винтовой структуры кристаллов, так и двойного магнитного поля. Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment) от Samsung.
  • Super PVA от Sony-Samsung (S-LCD).
  • Super MVA от CMO.
  • ASV (Advanced Super View), так же называется ASVA (Axially Symmetric Vertical Alignment) от Sharp

Матрицы типа *VA (MVA — Multi-domain Vertical Alignment, PVA — Patterned Vertical Alignment и их разновидности) характеризуются высокой контрастностью и достаточно хорошей цветопередачей.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским свойствам.

IPS

Классические матрицы типа IPS (In-Plane Switching) к настоящему времени практически не встречаются в продаже. Их сменили различные модификации IPS-матриц. Все они, по сравнению с другими типами матриц, выдают наилучшую цветопередачу и имеют углы обзора 178° по горизонтали и по вертикали без видимых искажений цветов при уменьшении угла наблюдения. Проще говоря — картинка на таком мониторе не тускнеет если на нее смотреть справа, слева, сверху или снизу.

Технология IPS была разработана компанией Hitachi в 1996 году в первую очередь для устранения этих двух проблем – маленьких углов обзора и низкого качества цветопередачи.

IPS — технология выполнения матрицы жидкокристаллического (на тонкопленочных транзисторах) экрана, когда кристаллы расположены параллельно друг другу вдоль единой плоскости экрана, а не спирально (как у TN). При отсутствии напряжения молекулы жидких кристаллов не поворачиваются.

На практике самое важное отличие IPS-матрицы от TN-TFT-матрицы состоит в повышенном уровне контрастности за счет практически идеального отображения черного цвета. Картинка получается более четкой.

Мониторы и дисплеи, созданные на базе IPS-матриц, гораздо более энергоемкие. Это обусловлено высоким уровнем напряжения, требуемого для поворота массива кристаллов. IPS требуется время, чтобы повернуть весь массив параллельных кристаллов. Таким образом, при выполнении задач, где важна скорость прорисовки, гораздо выгоднее использовать матрицы TN. С другой стороны, в повседневном применении разницу во времени отклика человек не замечает.

Мониторы на IPS-матрицах, как правило, имеют маркировку «PRO» (профессиональный) и стоят немного дороже остальных. Их предпочитают использовать художники и графические дизайнеры. Многие производители мобильных устройств комплектуют свои гаджеты IPS-экранами. К примеру, дисплей Iphone 4 является жидкокристаллическим (LCD), управляется тонкоплёночными транзисторами (TFT), и в нём жидкие кристаллы поворачиваются в плоскости дисплея (IPS).

На базе IPS было разработано несколько технологий с улучшенными характеристиками:

  • S-IPS (Super-IPS) — была разработана в 1998 году, как улучшенная технология стандартной IPS. Имеет улучшенную контрастность и меньшее время отклика (используется технология Overdrive), чем у оригинальной матрицы. В настоящее время не выпускается.
  • AS-IPS (Advanced Super-IPS) — Была разработана в 2002 году. В сравнении с S-IPS матрицей, улучшена контрастность и прозрачность самой матрицы, что улучшает яркость.
  • H-IPS (Horizontal IPS) — Появилась в 2007 году. Достигнута ещё большая контрастность и визуальная более однородная поверхность экрана (оптимизация белого цвета). Также дополнительно появилась технология Advanced True Wide Polarizer на основе поляризационной плёнки NEC, для достижения более широких углов обзора, исключения засветки при взгляде под углом. Используется в профессиональной работе с графикой.
  • e-IPS (Enhanced IPS) (разновидность H-IPS) — 2009 год. Имеет более широкую апертуру для увеличения светопроницаемости при полностью открытых пикселях, что позволяет использовать более дешевые в производстве лампы подсветки, с более низким энергопотреблением. Улучшен диагональный угол обзора, время отклика уменьшено до 5 мс. Мониторы на матрицах E-IPS имеют стандартный цветовой охват.
  • S-IPS II — схожа по характеристикам с E-IPS. Немного меньше glow (глоу) эффект. По сути не является производной H-IPS, а считается отдельным ответвлением.
  • P-IPS (Professional IPS) (разновидность H-IPS) — Разработана в 2010 году. Обеспечивает 1,07 млрд цветов (30-битная глубина цвета). Больше возможных ориентаций для субпикселя (1024 против 256) и лучшая глубина true color-цветопередачи. Мониторы на матрицах P-IPS имеют расширенный цветовой охват.
  • AH-IPS (Advanced High Performance IPS) — 2011 год. Улучшена цветопередача, увеличено разрешение и PPI, повышена яркость и понижено энергопотребление.
Еще по теме:  Проектор для рисования на пряниках своими руками

PLS

PLS-матрица (Plane-to-Line Switching) была разработана компанией Samsung как альтернатива IPS и впервые продемонстрирована в декабре 2010 года. Технология PLS базируется на схожих с IPS принципах построения матриц. PLS — матрицы имеют более выгодные характеристики в возможности размещать пиксели более плотно, в высокой светопропускаемости и яркости, а также чуть меньшее энергопотребление чем у IPS. Но есть у PLS и значительные минусы. Самая низкая контрастность среди ЖК матриц и цветовой охват не более sRGB.

Источник: varyag-nord.livejournal.com

Разница между TFT и LCD

И снова путаница понятий. Если вы пытаетесь определить, чем отличаются мониторы или телевизоры, которые кто-то обозвал TFT и LCD — значит, вас ввели в заблуждение. Попробуйте найти отличия между автобусом и Икарусом? Между собакой и соседской Жучкой? Между фруктом и яблоком? Правильно, занятие бесполезное, потому что оба объекта являются одновременно и тем, и другим.

Так и с технологиями матриц экранов: LCD — общее название класса дисплеев, к которому относится и TFT.

Определение

TFT-матрица — активная матрица LCD-дисплея, выполненная на основе применения тонкопленочных транзисторов.

LCD — плоский дисплей (и устройство на его базе) на основе жидких кристаллов.

Сравнение

LCD-дисплеи — изобретение не нашего века. Экраны электронных часов, калькуляторов, приборов, плееров — тоже жидкокристаллические, хотя значительно отличаются от привычных нам экранов смартфонов или телевизоров. Правда, поначалу LCD были монохромными, однако с развитием технологий расцвели в гамме RGB.

TFT — тоже разновидность LCD-дисплеев, в основе производства которого лежит активная матрица на тонкопленочных транзисторах. Если сравнивать его с более ранним вариантом LCD, пассивной матрицей, то становится очевидным, что качество цветопередачи и время отклика TFT гораздо выше. В качестве кристаллов в пассивных матрицах используется скрученный полимер. Зато энергопотребление и стоимость пассивных матриц, получивших именование STN, могут порадовать любого. Впрочем, монохромные экраны в этом отношении будут выглядеть вообще призовыми, однако желающих смотреть такие телевизоры вряд ли будет много.

Принцип работы TFT заключается в том, что каждый из тонкопленочных транзисторов управляет единственным пикселем. На каждый пиксель приходится три транзистора, соответствующих основным цветам RGB (красному, зеленому и синему). Интенсивность светового потока зависит от поляризации, поляризация — от приложения электрического поля к жидким кристаллам. TFT предполагает повышение уровня быстродействия, контрастности и четкости полученного изображения.

Еще по теме:  Нормы санпин проектор в школе

Стоит отметить и недостатки матриц TFT, устраненные в других технологиях. Качество изображения напрямую зависит от внешнего освещения экрана. Транзисторы у любого из пикселей могут выйти из строя, что приводит к появлению “мертвых точек”, или битых пикселей. От этого ни один экран застраховать нельзя. Кроме того, TFT-матрицы в значительной мере энергоемкие, так что их использование в качестве дисплеев для мобильной электроники заставляет поступаться одним из самых важных свойств — автономностью.

Тонкопленочные транзисторы, составившие основу работы жидкокристаллических матриц, сегодня практически перебежали в другой лагерь: экраны OLED используют их для управления своими активными матрицами. Здесь уже не жидкие кристаллы, а органические соединения.

Выводы TheDifference.ru

  1. LCD — тип матриц экрана, основанных на жидких кристаллах.
  2. TFT — разновидность активных LCD-матриц.
  3. TFT отличает от других технологий LCD применение тонкопленочных транзисторов.
  4. TFT-матрицы экономичны, обеспечивают качественную картинку, но энергоемкие.

Похожие статьи

(6 оценок, среднее: 5,00 из 5)

Источник: thedifference.ru

Жидкокристаллические матрицы мониторов TFT TN и TFT IPS

ВКонтакте AppGallery Huawei

От качества матрицы монитора зависит не только яркость и красота изображаемой картинки, но и комфорт и безопасность для зрения пользователя. Все компании, выпускающие мониторы, идут в ногу со временем и с каждым годом совершенствуют технологию производства, стараются добиться идеальной цветопередачи и снизить нагрузку на глаза.

При выборе монитора покупатель в первую очередь обращает внимание на качество и тип дисплея, ведь именно от него зависит здоровье ваших глаз. Современная матрица экрана состоит из нескольких слоев:

  • активная матрица, благодаря которой формируется картинка;
  • слой жидких кристаллов;
  • слой подсветки, которая бывает светодиодной или люминесцентной.

На сегодняшний день большинство продаваемых мониторов имеют жидкокристаллический дисплей на тонкопленочных резисторах (TFT-LCD). Существует несколько технологий, по которым производятся современные дисплеи. Попробуем выяснить преимущества и недостатки двух популярных технологий TN+film и IPS .

Преимущества и недостатки TFT TN

Одной из первых технологий, на основании которой и сегодня производятся дисплеи, является TN+film (Twisted Nematic + Film). Это очень распространенный и недорогой вид матриц, который с каждым годом совершенствуется.

Главным преимуществом считается то, что выпуск TN мониторов доведен до совершенства и это позволяет существенно снизить его себестоимость. Малое время отклика матрицы позволяет без искажений просматривать динамические сцены на жидкокристаллических мониторах с технологией TN+film.

Однако у этих мониторов есть ряд отрицательных качеств, таких как:

  • низкая цветопередача ввиду малого количества данных на каждый канал (6 бит);
  • малая контрастность из-за особенности расположения жидких кристаллов в дисплее;
  • низкие показатели по углам обзора экрана;
  • высокая вероятность появления «битых пикселей».

Преимущества и недостатки TFT IPS

Более новой разработкой в области производства мониторов является технология IPS (in-plane switching). Данный вид дисплеев был изобретен, чтобы устранить недостатки предыдущих моделей.

Основными преимуществами данной технологии являются:

  • улучшенная цветопередача (8 бит на канал);
  • расширенные углы обзора, достигающие 178 градусов с любой точки;
  • почти эталонный черный цвет.

Но все же у мониторов с IPS матрицей есть и негативные стороны, такие как:

  • невысокие показатели яркости и контрастности, вследствие особенности размещения управляющих электродов;
  • плохие показатели времени отклика матрицы;
  • относительная дороговизна.

Каждая из описанных технологий имеет свои достоинства и негативные особенности. Но сейчас производство дисплеев находится на высоком уровне и отличия мониторов с разными технологиями становятся не столь критичными, что значительно облегчает выбор при покупке.

Источник: www.starlink.ru

Оцените статью
Добавить комментарий