Разрешающая способность ТВ это

Вопрос о разрешении телекамеры прост, но часто его неправильно понимают. Когда речь идет о разрешающей способности системы видеонаблюдения (телекамера-линия связи-устройство записи-монитор), то основной частью системы будет устройство ввода (то есть в большинстве случаев разрешающая способность системы будет во многом определяться разрешающей способностью телекамеры).

Существует разрешающая способность по вертикали и разрешающая способность по горизонтали.
Эти параметры измеряются по испытательной таблице. Разрешающая способность по вертикали
— это максимальное число горизонтальных линий, которое способна передать телекамера. Это число
ограничено стандартом CCIR/PAL до 625 горизонтальных строк и стандартом EIA/NTSC до 525 строк.
Реальное вертикальное разрешение (в обоих случаях) далеко от этих значений.

Если принимать во внимание кадровые синхроимпульсы, уравнивающие строки и пр., то максимальная разрешающая способность по вертикали оказывается равной 575 строк в CCIR/PAL и 470

How to use data to make a hit TV show | Sebastian Wernicke

строк в EIA/NTSC. Это требует корректировки с учетом фактора Келла — 0.7, и мы получим макси-
мальное действительное вертикальное разрешение в 400 ТВЛ для CCIR/PAL (более подробно см.

«Разрешающая способность» в главе 4 «Общие характеристики телевизионных систем»). Дедуктивное рассуждение может быть продолжено для сигнала EIA/NTSC, что даст максимальное действи-

тельное вертикальное разрешение в 330 ТВЛ.

Разрешающая способность по горизонтали — это максимальное число вертикальных линий, которые способна передать телекамера (В тех случаях, когда в документации указана только разрешающая. Телекамеры в системах видеонаблюдения CCTV способность, то это надо понимать, как разрешающая способность по горизонтали. Это число ограничено только технологией и качеством монитора. В наши дни существуют ПЗС-телекамеры с разрешающей

способностью по горизонтали более 600 ТВЛ.

Горизонтальное разрешение ПЗС-телекамер обычно равно 75% горизонтальных пикселов ПЗС-матрицы. Как объяснялось выше, это результат соотношения сторон 4:3. В частности, подсчитывая вертикальные линии в целях определения горизонтального разрешения, мы считаем только горизонтальную ширину, эквивалентную высоте монитора по вертикали. Идея в

основе сего — получить линии равной толщины, как по вертикали, так и по горизонтали. Итак, если мы подсчитаем общее количество вертикальных линий по ширине монитора, то их надо умножить на 3/4 или 0.75. Поскольку это необычный расчет, то мы обычно называем горизонтальное разрешение ТВ-линиями (ТВЛ), а не просто линиями.

Для оценки разрешения телекамеры существует ряд тестовых диаграмм. Наиболее популярна
таблица EIA RETMA, но для этих целей можно использовать и другие.

Вопрос о разрешении телекамеры прост, но часто его неправильно понимают. Когда речь идет о разрешающей способности системы видеонаблюдения (телекамера-линия связи-устройство записи-монитор), то основной частью системы будет устройство ввода (то есть в большинстве случаев разрешающая способность системы будет во многом определяться разрешающей способностью телекамеры).

Цифровое телевидение как обман зрения: свойства зрительной системы

Существует разрешающая способность по вертикали и разрешающая способность по горизонтали. Эти параметры измеряются по испытательной таблице. Разрешающая способность по вертикали — это максимальное число горизонтальных линий, которое способна передать телекамера. Это число ограничено стандартом CCIR/PAL до 625 горизонтальных строк и стандартом EIA/NTSC до 525 строк.

Реальное вертикальное разрешение (в обоих случаях) далеко от этих значений.

Если принимать во внимание кадровые синхроимпульсы, уравнивающие строки и пр., то максимальная разрешающая способность по вертикали оказывается равной 575 строк в CCIR/PAL и 470

строк в EIA/NTSC. Это требует корректировки с учетом фактора Келла — 0.7, и мы получим максимальное действительное вертикальное разрешение в 400 ТВЛ для CCIR/PAL. Дедуктивное рассуждение может быть продолжено для сигнала EIA/NTSC, что даст максимальное действительное вертикальное разрешение в 330 ТВЛ.

Разрешающая способность по горизонтали — это максимальное число вертикальных линий, которые способна передать телекамера (В тех случаях, когда в документации указана только разрешающая. Телекамеры в системах видеонаблюдения CCTV способность, то это надо понимать, как разрешающая способность по горизонтали. Это число ограничено только технологией и качеством монитора. В наши дни существуют ПЗС-телекамеры с разрешающей способностью по горизонтали более 600 ТВЛ.

Горизонтальное разрешение ПЗС-телекамер обычно равно 75% горизонтальных пикселов ПЗС-матрицы. Как объяснялось выше, это результат соотношения сторон 4:3. В частности, подсчитывая вертикальные линии в целях определения горизонтального разрешения, мы считаем только горизонтальную ширину, эквивалентную высоте монитора по вертикали.

Идея в основе сего — получить линии равной толщины, как по вертикали, так и по горизонтали. Итак, если мы подсчитаем общее количество вертикальных линий по ширине монитора, то их надо умножить на 3/4 или 0.75. Поскольку это необычный расчет, то мы обычно называем горизонтальное разрешение ТВ-линиями (ТВЛ), а не просто линиями.

Для оценки разрешения телекамеры существует ряд тестовых диаграмм. Наиболее популярна таблица EIA RETMA, но для этих целей можно использовать и другие.

Источник: www.vid66.ru

Телевизионная съемка

Телевизионная съемка ведется телевизионными камерами в оптическом диапазоне электромагнитного спектра (0,4-1,1 мкм). Сущность телевизионной съемки заключается в том, что оптическое изображение местности преобразуется в электрический видеосигнал. Телевизионные приемники относятся к оптико-электронным системам дистанционного зондирования. Телевизионные камеры состоят из объектива, фокусирующего изображение на светочувствительную поверхность, электронно-лучевой трубки, блоков считывания информации и формирования сигналов для трансляции на наземные приемные пункты. Основной составной частью телевизионной камеры является электронно-лучевая трубка (ЭЛТ), которая и является приемником электромагнитного излучения.

Принципиальное отличие телевизионной камеры от фотоаппарата заключается в том, что оптическое изображение местности через объектив проектируется не на фотопленку, а на светочувствительный экран, на котором формируется электронное изображение, которое преобразуется в электрический видеосигнал. Кроме того, ресурс элементов оптико-электронной регистрации на много больше, чем возможный запас фотопленки на борту носителя, а значит, спутник с телевизионной системой может годами функционировать на орбите и оперативно постоянно передавать информацию на наземные приемные станции.

К достоинствам оптико-электронных приемников следует отнести то, что они обладают гораздо большей чувствительностью, чем фотоматериалы, что важно при съемке в условиях малой освещенности невысокой отражательной способностью объектов местности. Однако они имеют значительно меньшую разрешающую способность, чем фотопленка, а также имеют значительные геометрические искажения.

В телевизионных камерах используются два вида передающих телевизионных трубок – диссекторные и видиконовые. Первые телевизионные камеры оснащены широкоугольным объективом, что позволяет фиксировать в пределах кадра значительные территории. В качестве светочувствительного элемента в этих трубках используется фотокатод, работа которого основана на внешнем фотоэффекте (рис.13). Фотокатод диссектора, на который проектируется опти­ческое изображение, испускает электроны с плотностью, пропор­циональной освещенности.

Так создается электронное изображе­ние, элементарные участки (элементы) которого с помощью откло­няющей системы последовательно подводятся к входному отверстию-фотоэлектронного умножителя, вырабатывающего электрический видеооигаал. В результате развертки двумерное изображение, пре образованное в одномерную функцию изменения напряжения во времени, можно передать по одному каналу связи.

Эти телевизионные камеры используются для глобальных съемок с геостационарных спутников. Впервые такая камера была установлена на спутнике «Молния-1». Недостатком таких телевизионных камер является невысокая разрешающая способность при широком угле зрения и громоздкость аппаратуры. Более широкое применение при дистанционном зондировании получили телевизионные камеры с видиконовыми передающими трубками, где в качестве светочувствительного экрана используется полупроводниковый фотоэлемент, работа которого основана на внутреннем фотоэффекте.

На плоскую поверхность прозрачного в требуемом спектральном интервале баллона трубки напыляется тончайшая пленка металла — сиг­нальный электрод, на которую наносится слой полупроводника (фотосопротивление). Если спроектировать изображение на свето­чувствительную мишень, то отдельные ее участки вследствие внут­реннего фотоэффекта изменят электрическое сопротивление обрат­но пропорционально их освещенности.

Еще по теме:  Что означает очистить кэш в телефоне Андроид

В результате оптическое изображение создает на светочувствительной мишени электриче­ское изображение (потенциальный рельеф) из положительных за­рядов. Видеосигнал формируется на сигнальном электроде в про­цессе разряда мишени электронным лучом, быстро обегающим всю мишень.

Движение луча по мишени обеспечивает отклоняю­щая система трубки, а образование узкого луча — фокусирующая. Чем меньше диаметр луча и, следовательно, больше строк скани­рования, тем более мелкие детали различаются в телевизионном изображении. Современные трубки космических телевизионных систем обеспечивают 500—1000 строк развертки при размерах мишени 0,5—5 см.

Высокая чувствительность мишеней с внутрен­ним фотоэффектом, применяемых в видиконе, позволила упростить трубку и уменьшить ее размеры, что очень важно для орбиталь­ной съемки. В видиконе, в отличие от диссектора, электрическое изображение в виде зарядов образуется (накапливается) в тече­ние (всего времени между очередными циклами считывания потен­циального рельефа электронным лучом. Этот принцип повышает эффективность работы трубки и позволяет формировать телеви­зионное изображение в виде отдельных кадров.

В этих камерах наряду с высококачественными ЭЛТ используются узкоугольные длиннофокусные объективы, что позволило значительно повысить разрешающую способность снимков в 5-6 раз по сравнению с первыми снимками с ИСЗ типа «Метеор-Природа». Кроме того, в видиконе в отличие от диссектора, электрическое изображение в виде зарядов образуется в течение всего времени между очередными циклами считывания потенциального рельефа на светочувствительном экране электронным лучом, что позволяет формировать телевизионное изображение в виде отдельных кадров.

Телевизионная съемка для метеорологических целей проводилась с советских ИСЗ «Метеор», российского «Ресурс-0», американских «Тайрос» и «Нимбус». Разрешение телевизионных снимков — несколько километров (по краям от 6 до 8 км). Эти снимки используютсядля дешифрирования облачного покрова, составления карт облачности, которые используются для прогноза погоды. Также они используются для изучения снежного покрова в целях гидрологических прогнозов и анализа ледовой обстановки на морях.

Кроме метеорологических целей и исследования земной поверхности телевизионная съемка используется при изучении планет Солнечной системы и их спутников.

Основные достоинства телевизионных съемок — оперативность (получение изображений в реальном или близком к реальному масштабу времени), технологичность в обработке, обеспечение быстрой и многократной повторности съемок одних и тех же территории.

Сканерная съемка

Сканерная съемка в отличие от фотографической и телевизионной может выполняться от видимого диапазона до инфракрасного теплового с длиной волны в единицы и десятки микрометров. Для съемки используются оптико-механическое сканирующее устройство, которое состоит из вращающегося зеркала, устанавливаемого под углом 45° к направлению вращения, перпендикулярному к плоскости орбиты и детекторов, чувствительных к излучению определенных длин волн (рис. 15).

Принцип работы оптико-механического сканирующего устройства заключается в следующем: сканирующий элемент (вращающееся зеркало), поэлементно просматривая местность поперек движения носителя (рис. 14), посылает лучистый поток в объектив и далее на точечный фотоприемник (детектор), который преобразует его в электрический сигнал, передаваемый с носителя по каналам связи на наземные приемные станции (рис.15).

Детекторы сканирующего приемника выбираются в зависимости от требуемого диапазона зондирования. При съемке в диапазоне 0,4 — 1,1 мкм. используются кремневые, в окне прозрачности атмосферы 7-14 мкм. применяют детекторы из ртуть-кадмий-теллурида или германия с включениями ртути.

Отличительная особенность сканерных снимков состоит в том, что их изображение состоит из полос (сканов), которые в свою очередь состоят из отдельных элементов (пикселов). Спектральная яркость объектов в пределах элемента изображения усредняется и детали не различаются.

Разрешающая способность изображений, получаемых сканирующими системами и ширина охвата съемкой полосы, зависят от угла сканирования (обзора) и мгновенного (элементарного) угла зрения. Угол сканирования и мгновенный угол зрения, а следовательно, охват съемкой и разрешение на местности — взаимосвязанные величины. Чем выше разрешение сканера, тем меньше охват съемкой местности. Например, при разрешении 1-2 км, из космоса снимают полосу шириной в несколько тысяч километров; при разрешении в 200-300м до 1000км, а при разрешении в 50-80м ширина полосы съемки не превосходит первые сотни метров.

По своим геометрическим свойствам сканерный снимок, состоящий из отдельных элементов, уступает фотографическому. Однако, сканерная съемка, в отличие от фотографической, имеет большие возможности по использованию узких съемочных зон для получения изображения во всех спектральных диапазонах. Кроме того, она обеспечивает быструю передачу информации на наземные приемные станции и возможность представления снимка в цифровом виде, что позволяет использовать компьютерные технологии для его тематической обработки.

Оптико-механические сканеры с вращающимся зеркалом достаточно сложны в изготовлении и эксплуатации. В последнее время широко начали использоваться для сканирования многоэлемептные приборы с зарядовой связью (ПЗС), которые отличаются простотой и надежностью сканирования.

В качестве светочувствительного элемента в этих системах используются линейки, которые смонтированы из нескольких тысяч кристаллических детекторов. На линейку проецируется изображение местности и с каждого детектора снимается электрический сигнал, характеризующий спектральную яркость снимаемого объекта (рис. 16). Для сканирования в различных зонах спектра применяют несколько линеек, регистрирующих каждая свой спектральный интервал. Такое сканирование проводится в оптическом диапазоне.

Впервые сканерная съемка начала проводиться с советских метеорологических спутников серии «Метеор» и американских серии «Нимбус», получаемые снимки имели разрешение 1-3 км в центре и 5-8км по краям.

К 70-м годам техника сканерной съемки существенно усовершенствовалась, что позволило получать снимки более высокого разрешения и использовать ее для изучения природных ресурсов.

Впервые сканерный метод съемки для изучения земной поверхности был выполнен с американского ресурсного спутника ERTS, впоследствии переименованный в «Ландсат». Для съемки использовалась многоспектральная сканирующая система МSS, дающая изображение полосы шириной 185 км в зеленом, красном и ближнем инфракрасном диапазонах спектра в интервалах 0,5-0,6; 0,6-0,7; 0,7-0,8; 0,8-1,1мкм. Элемент разрешения на местности 59×79м.

С 1974 по 1980гг. в СССР проводились запуски спутников серии «Метеор» и «Космос» с экспериментальной аппаратурой для сканерной съемки в целях изучения природных ресурсов. Основная съемочная аппаратура, общая для всех этих спутников – многозональное сканирующее устройство малого разрешения (МСУ-М), работающее в тех же спектральных диапазонах, что и многозональная сканирующая система МSS на спутнике «Ландсат».

Многоэлементные ПЗС-снимки с разрешением 45м в полосе обзора 45км, в трех спектральных диапазонах: 0,5-0,6; 0,6-0,7; 0,8-0,9 мкм получают с российских спутников серии «Ресурс 0-1». На французском спутнике SPOT установлены две идентичные съемочные камеры с многоэлементными линейными светоприемниками. Ряд (линейка) светоприемнико-детекторов включает 6000 элементов, дающих строку ширины полосы охвата 60км. Ведется многозональная съемка в трех спектральных диапазонах 0,50-0,59; 0,61-0,68; 0,70-0,89мкм с разрешением 20м или монохроматическая в интегральной зоне 0,51-0,75мкм с разрешением 10м. Снимки со спутника SPOT используются для решения задач топографического и крупномасштабного тематического картографирования.

Снимки получаемые аппаратурой МСУ-М, используются в геологических, гидрологических, гляциологических и лесохозяйственных исследованиях. Снимки получаемые с помощью системы «Фрагмент» обладают высоким разрешением и используются для среднемасштабного тематического картографирования.

Дата добавления: 2016-07-22 ; просмотров: 4992 ;

Источник: poznayka.org

ПК «Сплайн-Технолоджис»

  • О компании
  • История
  • Наши клиенты
  • Наши партнёры
  • Скачать прайс-лист
  • Услуги и сервис
    • Гарантия и обслуживание
    • Платные услуги
    • Информация
      • Статьи, обзоры и описания
      • Тестирование
      • FAQ
      • Контакты
      • Корзина
      • Еще по теме:  Леново ТВ х606f характеристики

        (499) 372-13-60 (многоканальный)
        (495) 695-50-58, (495) 695-56-10

        Новости

        27.10.2021 12:32:03
        03.03.2021 10:11:01
        23.02.2021 10:22:32

        Телевидение и компьютер — вопросы и ответы

        В этой статье мы попытаемся дать некоторое представление о том как формируется телевизионное изображение, что получается при его оцифровке на компьютере и как всю эту информацию надо учитывать при обработке видео на компьютере.

        • Введение
        • Передача и формирование телевизионного изображения
        • Как учитывать специфику телевизионного сигнала
        • Разрешение: линии или строки?
        • Что показывает компьютер
        • Заключение

        Необходимость написания этого материала возникла после того, как многие начинающие любители цифрового видео стали присылать кадры из своих видеофильмов, на которых отчетливо были видны искажения изображения и задавали резонный вопрос — а что я не так делаю, на телевизоре изображение нормальное, а на компьютере нет?
        Телевидение было придумано десятки лет тому назад, задолго до появления электронных вычислительных машин, ни о каких цифровых преобразованиях тогда не могло быть и речи, поэтому все создавалось с целью удобной и дешевой передачи сигналов и последующего простого для уровня тогдашней техники отображения на экране. Поскольку видеоизображение на компьютере не может быть сформировано так же как в телевизоре, и возникают проблемы, вопросы по ним и т.д. Как ответы на большинство подобных вопросов и задуман этот материал.

        Передача и формирование телевизионного изображения

        Большинство смотрящих телевизор людей считают, что они видят изображение с частотой 25 кадров в секунду (здесь и далее информация будет относиться к телевизионным системам PAL/SECAM). Это не совсем так. На самом деле на экране меняется изображение 50 раз в секунду, но не все изображение, а только половина его. Сначала рисуется одна половина строк кадра изображения, затем другая.

        Каждая из половинок называется полем (field). Поэтому правильно считать, что на экране телевизора рисуется 50 полей в секунду. Эта технология хорошо иллюстрируется рисунками ниже:

        Он же, но разделенный на два поля

        Человек не замечает «половинчатости» каждого изображения как из-за инерции человеческого зрения, так и из-за послесвечения люминофора электронно-лучевой трубки телевизора. Тем не менее многие зрители легко отличают кинофильмы от телефильмов именно по большей дискретности перемещения объектов в кинофильме. Телефильмы снимаются на видеокамеры с теми же 50 полями в секунду, а кинофильмы на кинокамеру с 24 кадрами в секунду. При подготовке кинофильма к показу по телевидению каждый кадр преобразуется в два «половинчатых» поля, но, поскольку, движения в пределах одного кинокадра нет, эти поля, накладываясь друг на друга в глазах зрителя, просто восстанавливают исходный кадр с кинопленки.
        Некоторые цифры, характеризующие передачу телевизионного изображения:

        • Максимальное количество вертикальных линий, которое можно отобразить на телевизоре, укладывая их по горизонтали — 768. Такое количество линий можно даже увидеть, подав на низкочастотный вход телевизора прямоугольный сигнал частотой 15625 Hz. Линии будут чередоваться — по 0 сигнала белая, по 1 черная. Таким образом, полный телевизионный кадр получится 768х625. После отбрасывания служебных строк и обратного хода кадровой развертки остается реальное разрешение 720х576. Такое разрешение указывается для полноэкранного видео на компьютере во всех программах редактирования видео.
        • Требуемая для передачи полного телевизионного изображения полоса пропускания считается просто: 768(линий по горизонтали)/2 (одна линия белая, другая черная) = 384*625 (число строк в кадре) =240000*25 (число кадров в секунду) = 6000000 Hz = 6 MHz
        • Частота строчной развертки 15625 Hz, тем самым длительность одной строки 64 микросекунды.
        • Частота кадровой развертки 50 Hz, длительность одного поля соответственно 20 миллисекунд.
        • Количество строк, рисуемых за 20 миллисекунд — 312.5 (0.020/0.000064). В целом кадре соответственно 312.5х2=625

        Как учитывать специфику телевизионного сигнала

        Именно из-за незнания специфики телевизионного сигнала часто у многих пользователей возникают недоуменные вопросы после сброса видео на компьютер. Эти же вопросы возникают при сжатии видео в различные варианты MPEG формата. Итак, наиболее часто встречающиеся вопросы и ответы на них:

        Смотрю видео, захваченное с цифровой камеры, на компьютере и вижу, что изображение намного более темное, чем при просмотре того же фрагмента на телевизоре. Тем самым я не могу тщательно редактировать фильм, не имея представления о реальных цветах и яркости кадра. Почему это происходит и как исправить подобную ситуацию?
        Это явление общеизвестно и возникает из-за особенностей DV кодеков, используемых для декомпрессии DV и отображения его на экране. Действительно, изображение на экране монитора выглядит очень темным, несмотря на то, что это же изображение, отправленное на камеру, будет совершенно нормально выглядеть на телевизоре.

        Никаких радикальных средств борьбы с этим явлением нет, но есть возможность существенно уменьшить различия между телевизионным и компьютерным изображением. Поскольку как видеоредакторы, так и просто проигрыватели Windows используют режим overlay для показа видео, можно отрегулировать контрастность (Contrast), яркость (Brightness), цветовой тон (Hue), цветовую насыщенность (Saturation) именно для окна overlay’я.

        Такую возможность предоставляют видеокарты на процессорах от NVidia. В параметрах настройки всех современных драйверов от этого производителя есть соответствующая закладка Overlay Color Control. К сожалению, другой именитый производитель процессоров для видеокарт, Matrox Graphics, возможности настройки в режиме Overlay не предоставляет. Настройки параметров окна overlay НЕ ВЛИЯЮТ ни на что, кроме вывода видео. Вид окна настройки представлен на рисунке:

        Для настройки видеоизображения следует загрузить любой видеоклип в обычный проигрыватель Windows, нажать кнопку Стоп, затем вызвать панель настройки overlay, показанную выше и подобрать настройки по вкусу (еще разумнее смотреть то же изображение по телевизору).

        При просмотре кадров, которые я взял и сохранил на диске со своего видеофильма, обнаружил артефакт, который можно назвать «гребенкой» — зубцы на движущихся объектах или неподвижных, но при движении камеры. На телевизоре при этом все нормально. Как можно избежать подобных искажений и можно ли как-то исправить уже снятые кадры?
        Рассмотрим небольшой пример. Вот снимок людей, которые попали в кадр быстро поворачивающейся камеры:

        На этом снимке видно, что края всех предметов на снимке искажены «гребенкой». Этот артефакт вызван наложением двух полей, изображения на которых смещены друг относительно друга. Смещение соответствует расстоянию, которая камера прошла за 1/50 секунды. Избежать подобных искажений при съемке обычными видеокамерами невозможно. Только камеры с прогрессивной разверткой позволяют существенно уменьшить, а при небольшой скорости объекта/камеры убрать совсем подобные искажения. Если же хотелось бы все-таки сохранить такой кадр для размещения на WEB странице или печати на принтере, то можно улучшить качество изображения применением фильтра Video/De-Interlaced в программе Adobe Photoshop или Ulead Photoimpact 8. Результат получится таким:

        Следует только учесть, что разрешение по вертикали после такой операции падает в два раза, так как фактически одно поле удаляется и удваиваются строки другого поля.

        Захватил видео с цифровой камеры программой Ulead MediaStudio Pro (Adobe Premiere, Vegas Video и т.п.) и обнаружил странную картину — плеер Windows показывает, что разрешение записанного мною видео всего 360х288, хотя должно быть 720х576. Почему это происходит и как посмотреть видео в полном разрешении?
        Это действительно так. По умолчанию плеер Windows показывает DV Video в разрешении 360х288. Для перевода показа в полное разрешение нужно проделать следующее:

        Версия Windows Media Player Версия Windows Параметры настройки 6.x 98
        Еще по теме:  500 40 ТВ ком

        Запустить DV файл на воспроизведение и нажать Стоп. Затем в меню File/Properties (Файл/Свойства) выбрать Advanced (Дополнительно), далее DV Video Decoder, далее Properties (Свойства). В появившемся окне

        выбрать Full (Полное), Далее ОК и снова ОК.

        7.x 2000 Войти в меню Tools/Options (Сервис/Параметры), далее выбрать Performance (Быстродействие). Установите Video Acceleration (Аппаратное ускорение) в Full (Полное), Digital Video (DV) (Настройки цифрового видео) в Large (Крупно) 8.x XP Проделать то же самое, что и для Windows Media Player 7, но после установки Video Acceleration (Аппаратное ускорение) нажать кнопку Advanced (Дополнительно).

        Переведя плеер Windows в режим показа полного разрешения, не следует забывать, что плеер будет отображать каждый кадр из 2-х наложенных полей, что приведет к «гребенке» на краях движущихся объектов. Это явление подробно описано выше. В режиме 360х288 показывается только одно полке и подобных искажений нет.

        Что означает «камера с прогрессивной разверткой», «камера с обычной разверткой» — по идее телевизионное изображение всегда должно быть чересстрочным и никак иначе? И по этой же теме — как любая цифровая видеокамера делает «фотоснимок» — там же «гребенки» нет, причем на самой обычной, без «прогрессивных» способностей, камере?
        Действительно, телевизор может показывать только чересстрочное изображение, но здесь на самом деле нет никакого противоречия с возможностями некоторых видеокамер снимать с прогрессивной разверткой, но для понимания этого следует подробно описать технологию съемки видеокамерой:

        Съемка с чересстрочной разверткой

        Рассмотрим процесс съемки обычной видеокамерой, использующей только чересстрочную развертку. При такой съемке камера реально снимает 50 раз в секунду, причем информация с ее CCD (ПЗС) считывается именно по четным или нечетным строкам — т.е. сначала считываются нечетные строки (1, 3. 623, 625), затем, через 1/50 секунды, четные строки (2, 4. 622, 624). Поэтому при перемещении объекта съемки относительно камеры, изображения на разных полях будут отличаться друг от друга, причем чем больше будет скорость перемещения объекта съемки, тем заметнее будут отличия и, соответственно, больше «гребенка». У этого типа съемки есть одно явное преимущество — плавный показ движущихся объектов, так как на телевизоре никакой «гребенки» явно видно не будет. Недостатки съемки в чересстрочном режиме ощутимо видны только при монтаже на компьютере — практически невозможно сделать качественные стоп-кадры движущихся объектов для печати фотографий и/или создания альбомов файлов с наиболее интересными кадрами.

        Съемка с прогрессивной разверткой

        Процесс съемки камерой с прогрессивной разверткой отличается тем, что камера делает снимок каждые 1/25 секунды и затем записывает с него два поля, как и положено по телевизионному стандарту. Понятно, что в этом случае никаких нарушений правил нет, но изображение на одном поле никогда не будет смещено относительно другого поля. Видеофильм, снятый на такой камере, при показе на телевизоре будет очень напоминать кинофильм, который, как всем известно, снимается с частотой 24 кадра в секунду. Способностью снимать с прогрессивной разверткой обладает небольшое количество отнюдь не дешевых видеокамер, поэтому не следует надеяться встретить такую возможность в недорогих видеокамерах.

        Режим «фото» в цифровых видеокамерах

        Режим «фото» во всех современных цифровых видеокамерах работает одинаково вне зависимости от остальных характеристик видеокамеры. Этот режим представляет собой частный случай съемки с прогрессивной разверткой. Разница только в том, что таким образом делается только один снимок раз в 6-7 секунд и запись собственно снимка сопровождается записью звука в течении этого времени. Но запоминается сам снимок точно также, просто записывается один и тот же кадр в течении всего времени «фотосъемки». Такой снимок тоже не будет иметь «гребенки» и его не нужно подвергать описанной выше процедуре в Adobe Photoshop.

        Больной вопрос для многих начинающих любителей видео — как оценить качество съемки своей собственной камеры или той камеры, которую планируется купить. Одним из крайне важных параметров видеокамеры является разрешающая способность, которую обычно измеряют в ТВЛ (ТелеВизионные Линии). У большинства современных цифровых видеокамер значение этого параметра достигает 500 и более ТВЛ согласно паспортным данных на них. Наиболее популярный вопрос на эту тему — почему у камеры только 500 линий, в телевизионной картинке должно же быть 625 линий? На самом деле это совершенно разные понятия — строки, на которые раскладывается телевизионное изображение (их действительно 625) и ТВЛ, характеризующие качество изображения. Для понимания того, что есть ТВЛ, проще всего взглянуть на фрагмент обычной телевизионной испытательной таблицы:

        Цифры, стоящие рядом с линиями, как раз характеризуют разрешающую способность. Если можно различить линии рядом с цифрой 500, например, то разрешение записывается как «не хуже 500 ТВЛ». Для примера можно посмотреть на два реальных снимка телевизионной таблицы: снимок камерой SONY Digital 8 и снимок неофициального чемпиона по разрешающей способности SONY DCR-TRV900, взятых с сайта John Beale.

        Sony TRV7000 Picture

        Sony TRV900 Picture

        • Качество CCD (ПЗС)
        • Количество CCD (ПЗС), больше (3) — лучше
        • Количество светочувствительных элементов (пикселей) в CCD (ПЗС)
        • Качество DV кодера/декодера камеры
        • Качество оптики камеры

        Так как в DV стандарте жестко оговаривается формат записи DV на ленту, то для магнитофона цифровой видеокамеры разрешающая способность при записи видео будет одинакова для любой DV камеры стоимостью и $650 и $4000. Собственно говоря, и само понятие «разрешающая способность» для цифрового магнитофона абсурдно — нет же понятия «разрешающая способность жесткого диска», например. Правильным же значением, определяющим и в целом качество видеокамеры, будет разрешающая способность на отснятом изображении, но такой параметр приводится не часто — он может быть существенно меньшим, чем значение ТВЛ для магнитофона видеокамеры.

        • Видеоизображение всегда показывается только по кадрам, а кадр формируется наложением полей со всеми вытекающими отсюда последствиями в виде артефактов, одним из которых является упомянутая выше «гребенка».
        • Среди дозволенных видеокарте разрешений экрана разрешение 720х576 не значится, поэтому при правильном разрешении окна для видео оно будет окружено бордюром до разрешения видеокарты в 800х600 или 1024х768. В случае выбора режима полноэкранного просмотра изображение будет масштабироваться так, как видеокарта и ее драйвер считают нужным.
        • Разложение по полям для вывода по TV выходу видеокарта будет делать без всякой связи с оригинальным видеоизображением.

        В настоящее время только видеокарты Matrox практически лишены указанных выше недостатков, но эти видеокарты довольно дороги, редко встречаются в продаже и имеют невысокие параметры в части работы с трехмерной графикой.

        1. Специальную плату для ввода/вывода видео (сам видеофрагмент, конечно, должен иметь формат, поддерживаемый этой платой)
        2. Цифровую видеокамеру для вывода видео в DV формате. Это возможно благодаря тому, что любая цифровая видеокамера при поступлении на цифровой вход данных преобразует их в аналоговый сигнал, который может быть использован для просмотра DV на обычном телевизоре и/или записи на бытовой видеомагнитофон. К сожалению, таким образом нельзя использовать цифровые камеры с заблокированными входами, продаваемые в странах Европейского сообщества в силу их таможенных ограничений.

        Кратко в статье приведено большинство «подводных камней», которые ожидают любителя видео при работе на компьютере, вызванных исторически сложившейся спецификой формирования телевизионного изображения. По мере поступления новых вопросов на эту тему этот материал также будет расширяться.

        Источник: www.spline.ru

        Оцените статью
        Добавить комментарий