Блок питания цветного лампового телевизора схема

Основная цель, которая была поставлена — сделать источник питания для макетирования и отработки ламповых конструкций.

Основные минимальные требования для пректируемого блока питания, это:

— иметь по возможности компактный размер;
— анодное стабилизированное напряжение +300 Вольт 0.2А, с задержкой анодного напряжения на 10-15 сек.;
— анодное +350 Вольт 1А (не стаб.), для экспериментов с фильтрами и стабилизаторами;
— два раздельных накала (переменка) ~6.3Вольт 3А для общих случаев;
— один стабилизированный накал постоянным током =6.3 Вольт 1А;
— доп. выход ~220 Вольт 1А, гальванически развязанный с сетью, для экспериментов с первичными цепями импульсных БП;
— защита от перегрузки 0,2А (от кратковременного КЗ или ограничение тока в случае заряда мощных конденсаторов);
— формирование стабилизированного напряжения отрицательного смещения и его регулировка независимо по 2-м каналам.

В наличии имелся неисправный ИБП (бесперебойник), поэтому блок питания было решено собрать в его корпусе.

Лабораторный блок питания из старого телевизора

Принципиальная схема

Конструкция выполнена по классической схеме, анодный выпрямитель к тому же имеет ещё и отводы ~220 V, гальванически развязанного от сети (разьем X5), и выход непосредственно с конденсатора фильтра без стабилизации (+350V, разьем X4). Цепи отрицательного смещения выполнены по схеме вольтодобавки. Особенности узлов будут освещены ниже.

highslide.js

Рисунок 1.
Принципиальная схема лабораторного источника питания.

Стабилизатор анодного напряжения

Выполняет две задачи: сглаживает пульсации и обеспечивает плавную подачу высокого напряжения, предотвращая аварийные режимы при включении. Стабилизатор имеет защиту от перегрузки по току.
Немного подробнее о работе защиты: при указанном номинале R9 в 3 Ома, при токе более 180 мА, падение на нем составит 0.5 Вольт и возникший ток базы через R10 начнет отпирать транзистор Q2, который, в свою очередь, соединит собой исток и затвор Q1 и будет его принудительно закрывать. Напряжение на выходе фильтра начнет соответственно понижаться со скоростью разряда выходного конденсатора C12, конденсатора опорной цепочки C5 и стекания его заряда через резистор R5. Сам силовой транзистор Q1 полностью не закрывается, а переходит в режим стабилизации тока на уровне 0.2 А. Если превышение будет долгим, транзистор может выйти из строя от перегрева из-за чрезмерной рассеиваемой на нём мощности (70 Вт), поэтому допускать длительно короткое замыкание и работу в режиме ограничения тока — крайне нежелательно. Защита призвана сгладить именно кратковременные переходные процессы, коммутацию, искрение.

Рисунок 2.
Принципиальная схема анодного фильтра.

Конденсатор C5 должен иметь как можно меньшую утечку, лучше всего применить высококачественный пленочный конденсатор (и ни в коем случае не бумажный! типа КБГ, МБГО и т.п.). На печатной плате предусмотрена возможность установки разных типоразмеров конденсаторов на выбор. Емкость конденсатора C5 в сочетании с сопротивлением R4 задает время нарастания напряжения на выходе:

Импульсный блок питания из старого телевизора.Просто отрежь плату.

t ~= 2. 3 x (R4 x C5),

и при указанных номиналах С5=1µF и R4=4,7 МОм составляет около 10-15 секунд. Эту особенность можно использовать для организации задержки подачи анодного напряжения мощных радиоламп.
Следует помнить, что чем больше сопротивление R4 — тем выше требования к утечке и качеству самого конденсатора!
Стабилитроны ZD3-ZD7 набраны из нескольких последовательно включенных стабилитронов так, чтобы в сумме было получено нужное выходное напряжение. В случае требуемого выходного напряжения 300 Вольт суммарное напряжения на стабилитронах должно составлять 305 Вольт, для этого потребуется 4 стабилитрона на 68 Вольт и один на 33 Вольт, включенные последовательно.

Ток через стабилитроны ZD3-ZD7 задается сопротивлением R4 и крайне мал. Можно вообще отказаться от них (не устанавливать), в таком случае стабилизатор перейдет в режим «электронного дросселя» и будет просто сглаживать пульсации, но напряжение на выходе будет зависеть от нагрузки (в довольно больших пределах). Фактически, в таком режиме напряжение на выходе схемы будет примерно соответствовать минимальному пику пульсаций напряжения на входе. Это предпочтительнее в сильноточном (более 300 мА) режиме, потому что нагрев транзистора Q1 будет заметно меньшим; иначе, возможно, придется позаботиться о более эффективном радиаторе для Q1. В любом случае, лучше всего отрегулировать защиту по максимально допустимому для конкретного стабилизатора тепловому режиму и выходному току, соответственно пересчитав номинал R9.

Стабилизатор накала

Выполнен на линейном интегральном стабилизаторе. На выходе выпрямителя в идеале имеем всего около 7.7 вольт, поэтому были выбраны выпрямительные диоды 1N5821 с минимальным прямым падением на номинальном токе (0.50V-3A) и применен стабилизатор типа LT1084IT-ADJ (можно ставить и 1083 и 1085, так-же LM1084IT-ADJ, 1085, 1086), с минимальной разницей между входом и выходом порядка 1 Вольт на токе 1А. Нужное выходное напряжение задается делителем R8, R7, R6 и RP1 в цепи ADJ микросхемы LT1084. Подстроечный резистор RP1 позволяет более точно задать требуемое напряжение на выходе.

Рисунок 3.
Принципиальная схема стабилизатора накала.

Емкость C6 набрана из двенадцати конденсаторов 1000µF x 10V. Если позволяет высота — можно набрать C6 из более высоких 2200µF x 10V, что уменьшит пульсации и увеличит максимальный допустимый выходной ток накального стабилизатора до 2 Ампер (LM1086 здесь тогда не подойдёт).
В любом случае, если есть возможность домотать несколько витков на накальный трансформатор, имеет смысл увеличить переменное напряжение на входе с 6.3 до 7,5. 7,7 Вольт, что даст запас по нагрузочной способности.

Блок отрицательного смещения

Рисунок 4.
Принципиальная схема блока отрицательного смещения.

У применяемого в БП трансформатора, нет «лишней» обмотки для напряжения смещения отрицательной полярности, поэтому пришлось использовать метод «вольтодобавки» на однополупериодном выпрямителе VD4 C3, обеспечив развязку конденсатором C1. Полученное напряжение стабилизируется стабилизатором на R2, C4, ZD1-ZD2. Ток, потребляемый узлами исследуемого аппарата от подобного источника смещения, обычно очень мал, поэтому ток для стабилизатора задан около 3 мА — чтобы исключить ненужный нагрев и стабилитронов ZD1, ZD2 и гасящего резистора R2.
C выхода стабилизатора, напряжение подается на потенциометры RP2 и RP3, которыми задается нужное напряжение смещения в исследуемых схемах.
Ток, текущий через потенциометры, составляет около 2,8 мА и его тоже нужно учитывать в расчете балластного сопротивления R2 и требуемого тока через стабилитроны.
Так, как такой выпрямитель может оказывать влияние на выходное напряжение анодного выпрямителя без подключенной нагрузки, в схему был установлен нагрузочный резистор R load,составленный из пяти последовательно соединённых резисторов 4,7 кОм 2 вт.

Конечно, лучше будет использовать отдельную обмотку для напряжения смещения, а можно поставить дополнительный маломощный трансформатор, даже вольт на 24-36, и сделать выпрямитель с удвоением.

Рисунок 5.
Принципиальная схема блока регуляторов отрицательного смещения.

Печатная плата

Так как будущий корпус весьма компактен, пришлось принять меры для того, чтобы «вписать» все узлы в существующий конструктив и при этом обеспечить нужный режим охлаждения. Для этого, например, как было сказано выше, емкость C5 представляет собой 12 включенных параллельно конденсаторов 1000µF x 10V (D=10mm, h=12mm), чтобы получился «плоский» конденсатор на 12.000µF x 10V. В качестве радиаторов для Q1 и IC1 использованы отрезки уголка 40х20х2мм длиной 58мм. Площадь рассеяния радиаторов составляет примерно 50кв.см, что позволяет рассеять на них по 10W тепла, что для IC1 более чем достаточно, а для Q1 потребуется уточнить при эксплуатации. Для придания необходимой жесткости, плата по длинной стороне усиливается дюралевым уголком 10х10х1мм, являющимся также и верхней частью каркаса корпуса.

Еще по теме:  Почему трещит телевизор в выключенном состоянии

highslide.js

Рисунок 6.
Монтажный чертеж.

highslide.js

Рисунок 7.
Вид на плату со стороны деталей.

highslide.js

Рисунок 8.
Вид на плату со стороны пайки.

Конструкция

Корпус

Корпусом будущей конструкции послужил добротный металлический корпус отслужившего своё блока бесперебойного питания APS BackUPS BK500, одна из первых модификаций, без светодиодов на передней панели, ориентировочно 2003 года выпуска (впоследствии в «квадратик» в верхней части передней панели был врезан стрелочный индикатор, на фото его нет).

highslide.js

Рисунок 9.
Вид получившегося шасси без каркаса.

Внутренности полностью удалены; так как печатная плата представляла собой часть конструкции, то с помощью двух уголков восстановлена рама и жесткость корпуса. Вместо аккумулятора прекрасно встал анодный трансформатор ТА262-127/220-50 (он же используется как трансформатор гальванической развязки). Накальный трансформатор ТН44-127/220-50 размещен на штатном месте, все элементы выпрямителей и стабилизаторы смонтированы на образовавшемся «шасси» из уголков.

highslide.js

Рисунок 10.
Вид на заднюю панель с клеммами нагрузок.

Шесть пар выходных винтовых клемм: ~220V, =350, =300Vстаб,~6.3V/3A, ~6.3V/3A и =6.35V/1A смонтированы на стеклотекстолитовой планке, установленной вместо счетверенного гнезда выходных клемм UPS типа IEC320.

Два резистора регулировки напряжения смещения установлены слева вверху, клеммы подключения цепи отрицательного смещения — ниже, между предохранителем и сетевым разъемом. Оригинальный механический предохранитель на 4.5А сохранен.

Плата стабилизаторов

Плата стабилизаторов выполнена в виде единого модуля — части конструктива рамы корпуса. Два радиатора заполняют свободные щели вокруг силового анодного трансформатора. Балластное сопротивление R4 (четыре резистора 47кОм на 1 W каждый, включенные параллельно-последовательно) пока ещё не смонтированы. Отверстия в плате необходимы для отвода тепла от них. Все подключения к плате выполняются через клеммные колодки.

highslide.js

Рисунок 11.
Плата стабилизаторов в сборе.

highslide.js

Рисунок 12.
Устройство в сборе со снятым кожухом.

Общие замечания о конструкции и технологии

Общий вид собранного устройства. Монтаж, как видно, выполнен очень компактно, свободного места осталось совсем немного.

Провода уложены в жгуты с разделением на три категории:

— жгуты с силовыми проводами первичной цепи,
— жгуты с высоковольтными проводами вторичных цепей,
— жгуты с низковольтными проводами цепей накалов.

Все цепи выполнены проводом, сечением 0.5 или 0.75 кв.мм, кроме цепей накала, где применены жилы сечением около 2.2 кв.мм.
Печатная плата покрыта лаком. Покрытие платы лаком желательно, так как в плате имеется высокое напряжение, кроме того, в электронном фильтре есть высокоомные участки, где утечки по монтажу через влагу или загрязнения недопустимы, так как неизбежно приведут к нарушению нормального режима работы всего электронного фильтра. В крайнем случае, плату можно покрыть тонким слоем нейтральной канифоли, хотя это не лучший выбор, так как канифоль гигроскопична.

highslide.js

Рисунок 13.
Общий вид собранного устройства.

Vadim Limar

Скачать архив с печатной платой;
Архив

Источник: r-rl.ru

Варианты блока питания «Люстры Чижевского»

В февральском номере журнала редакция обратилась к читателям с просьбой присылать свои варианты схемотехнических решений блока питания «Люстры Чижевского». На эту просьбу одним из первых откликнулся автор публикуемой статьи, предложивший несколько вариантов таких блоков. И среди них — блок питания с использованием промышленного телевизионного умножителя напряжения. Кстати, такой же вариант использовал в своей конструкции А. Михайловский из Санкт-Петербурга — об этом он сообщил редакции.

Вебинар «Источники питания MORNSUN: новинки для промавтоматики и оптимальные решения для телекоммуникации» (25.05.2023)

Известно, что постоянное напряжение отрицательной полярности на «люстре» должно быть не менее 25 кВ, практически же в домашних условиях на «люстру» желательно подводить напряжение около 30 кВ. Исходя из этих цифр были разработаны предлагаемые блоки питания.

Схема первого варианта блока питания приведена на рис. 1. Сетевое напряжение, поступающее через вилку ХР1 и выключатель SA1, подается на мостовой выпрямитель, выполненный на диодах VD1-VD4. Выпрямленное напряжение фильтруется конденсатором С1.

В итоге на этом конденсаторе присутствует постоянное напряжение около 300 В, которое используется для питания релаксационного генератора, составленного из элементов R3, С2, VS1, VS2. Нагрузка генератора — обмотка I трансформатора Т1. С его обмотки II импульсы амплитудой примерно 5 кВ и частотой следования 800 Гц поступают на умножитель напряжения, собранный на диодах VD5-VD10 и конденсаторах СЗ-С8.

Трансформатор
Число витков
Провод
Сопротивление, Ом
TBC-110JBC-110M

Получившееся на выходе умножителя постоянное напряжение около 30 кВ подается через токоограничительный резистор R4 на «люстру».

Неоновая лампа HL1 — индикатор включения блока питания. Резистор R1 ограничивает броски тока, неизбежные при зарядке конденсатора С1. Предохранители FU1 и FU2 срабатывают при выходе из строя элементов выпрямителя либо высоковольтного умножителя напряжения.

Трансформатор Т1 — переделанный строчный трансформатор от черно-белого телевизора. Его высоковольтную обмотку II оставляют, остальные удаляют и вместо них наматывают обмотку I — 24 витка провода ПЭВ диаметром 0,5. 0,8 мм.

Для такого варианта подойдет практически любой строчный трансформатор, поскольку данные их вторичных обмоток различаются незначительно (для некоторых из них они приведены в табл. 1). К тому же выходное напряжение блока при необходимости можно увеличить добавлением еще одного каскада умножения. Нижний по схеме вывод обмотки II — это ее начало, вывод расположен ближе к магнитопроводу.

Динисторы VS1, VS2 — серии КН102 либо устаревшие Д228. Исходя из сведений, приведенных в табл. 2, включают последовательно столько динисторов, сколько может обеспечить суммарное напряжение включения около 200 В. Конденсаторы СЗ-С8 — ПСО, КОБ или другие емкостью не менее 100 пФ на номинальное напряжение не ниже 10 кВ; С1, С2 — на напряжение не ниже 400 В. Вместо указанных на схеме диоды VD1-VD4 могут быть Д237Б, Д237В, КД105Б, КД105В.

При монтаже высоковольтной части блока желательно предусмотреть запивку умножителя компаундом с высоким удельным сопротивлением, например, парафином. В этом отношении перспективным представляется вариант использования готового умножителя

Тип динистора
Напряжеиие включении, В
КН102А Д228А
КН102Б Д228Б
КН102В Д228В
КН102Г Д228Г

КН102Д Д228Д
КН102Ж Д228Ж
КН102И Д228И

УН 8,5/25-1,2, используемого в цветных телевизорах. Правда, в телевизоре он предназначен для получения плюсового напряжения, поступающего на анод кинескопа, нам же нужно минусовое напряжение для питания «люстры».

Чтобы «перевернуть» умножитель, достаточно сделать в нем еще один вывод — Д (рис. 2) аккуратным высверливанием и спиливанием компаунда для обеспечения доступа к нужной точке внутреннего монтажа умножителя. Для этого умножитель располагают так, чтобы перед вами было неперевернутое обозначение типа и выводов (прорезь для крепления умножителя на плате окажется при этом справа), тогда расположение элементов в компаунде будет соответствовать расположению их на приведенной принципиальной схеме. Два горизонтальных выступа по краям умножителя являются местами расположения конденсаторов, а интересующая нас точка Д находится у левого края верхнего выступа.

Если использовать только доработанный умножитель, напряжение на выходе его не превысит 25 кВ. Поэтому к умножителю придется добавить еще один каскад на диоде VD7 и конденсаторе С5.

Номиналы конденсаторов СЗ и С4 (типов К15-У1, К15-4, К15-13, К73-13) соответствуют тем, что стоят в умножителе.

Схема еще одного варианта блока питания приведена на рис. 3. Релаксационный генератор в нем выполнен на элементах R1, VD1, С1, HL1, VS1. Он работает при положительных полупериодах сетевого напряжения, когда конденсатор С1 заряжается до напряжения включения аналога динистора на неоновой лампе HL1 и тринисторе VS1.

Еще по теме:  Телевизор Samsung ue24n4500auxru 24 черный

Диод VD2 демпфирует импульсы самоиндукции первичной обмотки повышающего трансформатора Т1 и позволяет повысить выходное напряжение блока питания. При показанных на схеме трех каскадах умножения выходное напряжение достигает 26 кВ. Неоновая лампа — не только элемент аналога динистора, но и сигнализатор включения блока в сеть.

Высоковольтный трансформатор -самодельный, его наматывают на отрезке стержня диаметром 8 и длиной 60 мм из феррита М400НН. Вначале наматывают первичную обмотку — 30 витков провода ПЭЛШО 0,38, а затем вторичную — 5500 витков ПЭЛШО 0,05 или большего диаметра. Между обмотками и через каждые 800. 1000 витков вторичной обмотки прокладывают слой изоляции из обычной поливинилхлоридной изоляционной ленты.

В любом из описанных блоков возможно введение дискретной (а при желании — и плавной) многоступенчатой регулировки выходного напряжения коммутацией включенных в последовательной цепи аналогов динисторов (рис. 3,б) либо динисторов (рис. 3,в). В первом варианте обеспечиваются две ступени регулирования, во втором — до десяти (при использовании динисторов КН102А с напряжением включения 20В).

В качестве высоковольтного провода, соединяющего блок питания с «люстрой», автор использовал телевизионный антенный кабель РК диаметром 8 мм со снятыми наружной изоляцией и экранирующей оплеткой.

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.

  • а что за штуковина в схеме под названием ТН-0,2
  • Sasha Switch Условные обозначения электроэлементор надо знать, как «ОТЧЕ НАШ. » ТН-02 это газоразрядная лампа ( в обиходе «неонка»)
  • хм а без нее (лампы) можно собрать?
  • Смотря какую схему Там, где в цепи управления тиристорами от нет.
  • я про схему рис.1 потому что мне нужна простая схема с высоким импульсом. короче высокоимпульсный блок питания вот мой вариант и еще напряжение на первичке Т1 220В?
  • подобрал детали и спаял схему и у меня вопрос можно её без умножителя включить?
  • Sasha Switch Конечно можно. На выходе Вы получите импульсы переменного тока.
  • обьясните мне как может получиться отрицательное напряжение на выходе умножителя. и в описании схемы говорится что умножитель надо перевернуть,а если его перевернуть то он работать не будет потому то диоды работают в одну сторону. может я не прав то поправте меня.
  • что не могу я померить какое у меня напряжение на выходе мультиметр как был по нолям так и есть. а может нагрузку какую дать. какую?
  • Sasha Switch В схеме которую Вы привели в #6 умножитель напряжения не имеет второго вывода. Сравните с рис1. Она необходима. Смена полярности произойдёт при «разворачивании» диодов умножителя.[COLOR=»SandyBrown»] Мультиметром Вы ничего не измерите[/COLOR], даже на работающей схеме. Проверте целостность динисторов.
  • динисторы целые проводимости нет. но схема работать не будет потому что у меня динисторы стоят не те один кн102а а другой кн102б а у них напряжение отпирания маленькое.
  • Вы написали что «Она необходима.» Кто она? Лампочка или кто?
  • . может с детекторных приёмников начинать таким как ты . «знаток» 😀

Публикации по теме

  • СхемыБлок питания для «Люстры Чижевского»
  • СхемыЕще один блок питания «Люстры Чижевского»
  • СхемыРегулируемый бестрансформаторный блок питания для «Люстры Чижевского»
  • ФорумЗамена блока питания люстры на тороидальный трансформатор
  • ФорумБлок питания люстры на 12 В

Вебинар «Источники питания MORNSUN: новинки для промавтоматики и оптимальные решения для телекоммуникации» (25.05.2023)

Выбираем источники питания MEAN WELL в открытом исполнении для промышленных устройств

  • Измерения
  • Микроконтроллеры
  • Силовая Электроника
  • Электронные компоненты
  • Ремонт техники

Термогигрометры Ivit - замена психрометров

  • Подписка на обновления
  • Журнал «РадиоЛоцман»
  • Реклама
  • Размещение прайс листов
  • Контакты

Источник: www.rlocman.ru

Блоки питания для «люстры Чижевского»

Александр Леонидович Чижевский (1897-1964) разработал настолько совершенную конструкцию электроэффлювиальной «люстры», что нет необходимости в её модернизации. А вот громоздкие и тяжёлые блоки питания высокого напряжения первых «люстр» были весьма далеки от идеала. По мере появления новых электронных компонентов снижаются габариты и масса блоков питания. В предлагаемой подборке рассказано о двух таких блоках питания.

Автор доработал блок питания, сконструированный Б. С. Ивановым и вначале описанный в его книге [1] в 1975 г., а затем — в журнале «Радио» [2]. Цели доработки — повышение надёжности блока, введение индикатора высокого напряжения, применение менее габаритных деталей. Отмечено, что на резисторе R2 (см. схему на рис. 2 в [2]) рассеивается мощность больше номинальной (2 Вт), что снижает надёжность блока.

Схема доработанного блока показана на рис. 1. Упомянутый выше резистор R2 заменён двумя последовательно соединёнными R1 и R2 сопротивлением по 10 кОм и мощностью 2 Вт. Диоды Д205 и Д203 — КД105Г (VD1 и VD2) меньших размеров. Трансформатор ТВС-110Л6 от лампового телевизора также заменён малогабаритным ТВС-90П4 (Т1) от полупроводникового телевизора.

Его обмотки I и II включены так же, как в исходном блоке питания. Импульсное напряжение с обмотки II подаётся на выпрямитель с умножением напряжения, в который входят высоковольтный конденсатор C2 и умножитель U1, переделанный на выходное напряжение минусовой полярности по методике, описанной в статье [3]. В разрыв цепи общего провода умножителя включён резистор R4, который, по мнению автора, повышает надёжность запуска этого узла, когда все его конденсаторы разряжены. Высокое напряжение минусовой полярности через токоограничивающий резистор R6 подаётся на «люстру Чижевского».

Особенность трансформатора ТВС-90П4 — наличие дополнительной вторичной обмотки III. Она использована для питания светодиода HL1 — индикатора наличия высокого напряжения. Для этой цели ток в цепи обмотки, ограниченный резистором R5, выпрямляется диодным мостом VD3-VD6 и подаётся на светодиод HL1. Конденсатор C3 сглаживает импульсы напряжения на светодиоде и соответственно тока через него.

Светящийся индикатор HL1 свидетельствует о наличии импульсного напряжения на вторичных обмотках трансформатора Т1 и высокого напряжения на выходе блока питания, разумеется, при исправном умножителе напряжения. Желаемую яркость свечения индикатора HL1 устанавливают подбором резистора R5. Такая индикация высокого выходного напряжения очень удобна и совершенно безопасна по сравнению с другими способами, описанными в статье [2]: с помощью ваты, искрового разрядника или приближения руки к иглам «люстры» на расстояние 7. 10 см.

В блоке питания применены резисторы R1, R2, R4 — МЛТ-2; R3 — ПЭВ-10; R5 — МЛТ-0,125; R6 — КЭВ-2. Конденсаторы C1 — К73-17, C2 — К73-14, C3 — импортный оксидный малогабаритный. Блок питания помещён в корпус из прозрачного полистирола. Его внешний вид со снятой крышкой корпуса показан на рис. 2.

После отключения блока питания от сети конденсаторы умножителя напряжения долго остаются заряженными, в результате чего на иглах «люстры» сохраняется высокое напряжение. Для разрядки этих конденсаторов автор применяет разрядник, схема которого показана на рис. 3. Он содержит два последовательно соединённых резистора R1 и R2 из серии КЭВ суммарным сопротивлением около 1 ГОм.

Внешний вид разрядника показан на рис. 4. Резисторы размещены в трубке из органического стекла длиной 17 см и с толщиной стенок 4 мм. Минусовый электрод — медная пластина длиной 27 мм, шириной 6 мм и толщиной 0,5 мм. Допустимо использовать отрезок жала паяльника длиной около 3 см.

Плюсовой электрод — зажим «крокодил», соединённый с левым по схеме выводом резистора R1 гибким многожильным проводом МГШВ длиной около метра. Для разрядки конденсаторов умножителя напряжения достаточно прикоснуться на 5. 7 с минусовым электродом разрядника к иглам «люстры» или выходу блока питания. При этом плюсовой электрод разрядника должен быть соединён с общим проводом блока питания.

Еще по теме:  Телевизоры с выходом в интернет отзывы

В случае необходимости разрядник может быть легко переделан в кило-вольтметр. Для этого в разрыв гибкого провода на расстоянии 20.30 см от плюсового электрода включают любой микроамперметр постоянного тока с пределом измерения 50 мкА. Так как суммарное сопротивление резисторов R1 и R2 близко к 1 ГОм, значение тока, показанное микроамперметром, будет примерно равно значению напряжения в киловольтах.

Автор рассмотрел работу того же блока питания конструкции Б. С. Иванова [1, 2] и пришёл к выводу, что недостаток устройства — наличие мощного тепловыделяющего резистора R1 (см. схему на рис. 2 в [2]). Другой недостаток — наличие диода VD2 в цепи контура, образованного конденсатором С1 и обмоткой I трансформатора Т1. Любой «лишний» элемент снижает добротность контура.

В блоках питания, описанных в статьях [4, 5], встречно-параллельно трини-стору подключён диод, что позволяет отказаться от мощного резистора. В статье [5] диод VD2 выведен из контура. Но, по мнению автора, тринистор не очень хорошо подходит для коммутации колебательного контура.

При разработке блока питания была поставлена задача заменить тринистор более современным элементом — мощным высоковольтным ключевым полевым транзистором (во время разработки блока питания [1]таких транзисторов ещё не было. — Прим. ред.). Схема блока питания показана на рис. 5.

Устройство работает так. Когда на верхнем по схеме сетевом проводе по отношению к нижнему (общему проводу) действует полуволна сетевого напряжения плюсовой полярности, через диод VD5 и первичную обмотку (I) трансформатора Т1 заряжается конденсатор С3. Через диод VD2 — конденсатор С2 до напряжения, ограниченного стабилитроном VD1.

Это напряжение используется для питания фототранзистора оптрона U1.1 и микросхемы DA1. Одновременно через диод VD3, на котором падает напряжение 0,7 В, проходит ток, ограниченный резисторами R4 и R5. При этом стабилитрон VD4 закрыт, через излучающий диод оптрона U1.1 ток не идёт, поэтому фототранзистор оптрона закрыт.

Интегральный таймер DA1 включён как инвертор, имеющий характеристику переключения с гистерезисом. На выводах 2 и 6 микросхемы DA1 присутствует высокий уровень. На его выходе (выводе 3) и соответственно на затворе транзистора VT1 будет низкий уровень, поэтому транзистор VT1 закрыт. Вывод 7 таймера — выход с открытым коллектором — соединён с затвором транзистора VT1, что обеспечивает быструю разрядку ёмкости затвора и форсированное закрывание этого транзистора.

Когда напряжение сети меняет полярность, диодVD3 закрывается. Стабилитрон VD4 будет закрыт до тех пор, пока напряжение сети не возрастёт до 9,6 В (сумма напряжения стабилизации стабилитрона VD4 (8 В) и падения напряжения на открытом излучающем диоде оптрона (около 1,6 В)). Это время паузы для завершения переходных процессов.

По её окончании стабилитрон VD4 открывается, включается излучающий диод оптрона, открывается фототранзистор оптрона. Напряжение на выводах 2 и 6 микросхемы DA1 падает до низкого уровня, высокий уровень напряжения на выходе (вывод 3) открывает полевой транзистор VT1.

Открытый канал транзистора VT1 проводит ток при любой полярности напряжения и, в отличие от тринистора, не закрывается при прекращении тока через него, поэтому происходит колебательный процесс разрядки конденсатора С3 на первичную обмотку трансформатора Т1. Внутренний диод полевого транзистора не мешает этому режиму, так как открытый канал его шунтирует. В результате этого стало возможным значительно уменьшить сопротивление токоограничива-ющего резистора R2 и ёмкость конденсатора С3. На вторичной обмотке транс-форматораТ1 также возникают затухающие колебания, поступающие на умножитель напряжения, собранный на диодах VD6-VD11 и конденсаторах С4-С9. Постоянное напряжение с выхода умножителя через токоограничивающие резисторы R8 и R9 подают на «люстру».

В блоке питания применены конденсаторы С1 — К73-17,С2 -К50-35,С3 — К78-2 (автор применил три параллельно соединённых конденсатора суммарной ёмкостью 0,2 мкФ), С4-С9 могут быть из серий К73-13 или КВИ-3, Т1 — трансформатор строчной развёртки ТВС-110Л6 от чёрно-белого телевизора. Хорошие результаты получаются при использовании строчных трансформаторов ТВС-110ПЦ15 и ТВС-110ПЦ16 от цветных телевизоров. Можно использовать умножитель напряже-нияУН9/27-1,3, переделанный на выходное напряжение минусовой полярности, как описано в статьях [3, 5].

Большинство деталей смонтированы на печатной плате из фольгиро-ванного с одной стороны стеклотекстолита толщиной 1,5 мм. Чертёж платы со стороны печатных проводников показан на рис. 6. Детали установлены на другой стороне платы. Там же установлены две перемычки: одна соединяет выводы 4 и 8 микросхемы DA1, другая — её вывод 7 с затвором транзистора VT1.

На корпусе этого транзистора закреплён тепло-отвод — алюминиевая пластина толщиной 1 мм и площадью около 10 см2. Внешний вид платы с деталями показан на рис. 7.

При правильном монтаже блок питания не требует налаживания. Регулировать значение высокого напряжения на выходе можно подбором конденсатора С3. При налаживании и эксплуатации должны соблюдаться меры безопасности. При всякой перепайке деталей или проводов надо обязательно отключить устройство от сети и соединить выход высокого напряжения с общим проводом (для этого весьма удобен описанный выше разрядник).

1. Иванов Б. С. Электроника в самоделках. — М.: ДОСААФ, 1975 (2-е изд. ДОСААФ, 1981).

2. Иванов Б. «Люстра Чижевского» — своими руками. — Радио, 1997, № 1, с. 36, 37.

3. Алексеев А. «Горный воздух» на основе строчной развёртки. — Радио, 2008, № 10, с. 35, 36.

4. Бирюков С. «Люстра Чижевского» — своими руками. — Радио, 1997, № 2, с. 34, 35.

5. Мороз К. Усовершенствованный блок питания для «люстры Чижевского». — Радио, 2009, № 1, с. 30

Мнения читателей
  • Владимир / 28.05.2020 — 12:43 Юрий, вы неправильно себе представляете работу этого устройства. На остриях нет никакого высокочастотного колебания. Есть высоковольтное напряжение, и с иглы утекают именно негативно заряженные ионы
  • Юрий / 13.09.2018 — 09:42 Давно изучаю проблему ионизации воздуха и его благотворно влияния на здоровье. Но до сих пор не видел ни одного устройства, в том числе и люстра Чижевского, которое бы производила избыток отрицательных ионов, который наблюдают в естественных условиях в горах или на побережье когда волна разбивается о камни. Что происходит на острие люстры? Создаются высокочастотные переменные колебания электрического поля , которое разбивается молекулы воздуха на положительные и такое же число отрицательных ионов (закон сохранения заряда) и ни какого избытка желательных отрицательных.А в результате мы получаем ряд не желательных дополнительных ионов озона и других неприятностей.Наиболее приближенным к естественным природным условиям находится генератор с распылением воды Микулина, в котором используется баллоэффект. Однако и у него не учтено было то , что избыток заряда получается за счет контакта с землей, как источник дополнительных электронов.Есть предложение заземлить общий электрод.
  • Сергей / 27.05.2014 — 02:53 Первый преобразователь для аэроионизатора собрал еще, бог дай памяти, в 1966-м , еще на лампе 6П13С. Сколько еще даже не вспомнить. Отличная вещь,по крайней мере не вредная — это точно! Почему-то предпочитал транзисторные варианты схем. Почему транзисторных? Часто требовалось включить аэроионизатор в помещении где проблемы с сетью 220 в. Но вариант на тиристоре конечно немного проще. Много зависит от грамотного изготовления самого игольчатого излучателя аэроионов. Сейчас нет времени, потом (если не забуду это сделать) оставлю в комментарии описание одного из своих вариантов исполнения излучателя аэроионов.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник: www.radioradar.net

Оцените статью
Добавить комментарий