Что это означает на телевизоре Sony lvds spectrum

Данная таблица показывает на технические характеристики сенсоров изброженная CMOS Sony по следующим характеристикам оптическая площадь сенсора изображения разрешающая способность сенсора изображения светочувствительность размер элементарной ячейке пикселя технология изготовления сенсора изображения.

Обратите свое внимание, что с 2020 года Sony вывел с производства большой список моделей технологии CMOS Sony EXMOR с фронтальным [FI] типом засветки пикселя и перешёл на выпуск светочувствительных сенсоров изображения следующего поколения с обозначением CMOS Sony STARVIS с обратным типом засветки пикселя. [BI].
Если интересующей модели сенсора изображения не нашлось в таблицах данных перейдите в архивные данные сенсоры изображения CMOS Sony CCTV. ссылка

Необходимо понимать что Sony обозначает светочувствительность сенсоров изображения выпускаемых и разработанных целенаправленно для приложений безопасности в собственном оценочном индексе SNR1S=[люк]. Оценочный индекс SNR1s разработан и поддерживается Sony и относиться только для сенсоров изображения выпускаемых для приложения видеонаблюдения и не относиться к другим типам выпускаемых Sony сенсоров изображения фото видео и тд.

Диагностика неисправности т кона телевизора или проблемы искажения цветов, полос и т.д.. Самоучитель

  • Оценочный индекс SNR1s описание методика расчета можно ознакомится на этой WEB странице ссылка

Обратите внимание меньшее значение оценочного индекса SNR1s=[люк], указывает на лучшую светочувствительность сенсора изображения. Важно не путать значения индекса Sony SNR1s=[люк] с индексом ISO:=[люк], так как это разные значения не смотря что оба имеют обозначения = [люк]

Какие существуют методики измерения светочувствительности цифрового зрения можно изучить на этой странице этого WEB сайта стандарт ISO:ссылка

Таблица оригинальные данные CMOS Sony для видеокамер наблюдения характеристики всех сенсоров изображения CMOS Sony выпускаемых после 2020 года.

Обнавленные данные на декабрь 2022 года

**Если вас интересуют датчики изображения с глобальным затвором для машинного зрения перейдите по ссылке таблица сенсоры изображения Sony с глобальным затвором

Полное технические описание характеристик сводная таблица всех сенсоров изображения SONY выпускаемых для приложений видеонаблюдение камеры безопасности после 2020 года.

Для просмотра обновлённых данных за 2021 год перейдите по ссылке

информация о продукте разрешение Размер изображения
[Тип]
Размер пикселя
V = H [мкм
Макс. Частота кадров
[кадр /
I/F цветность Приложение Тип технологии затвора
Новый
IMX482LQR
1080-HD 1 / 1,2 5,8 90 MIPI CSI-2 RGB наблюдение DOL HDR *
Новый
IMX462LQR
1080-HD 1 / 2.8 2,9 120 CMOS Параллельный
саб LVDS Serial
MIPI CSI-2
RGB наблюдение DOL HDR *
Новый
IMX455AQK-K
61,2 млн. [3: 2] 2,7 3,76 21 SLVS-EC RGB наблюдение DOL HDR *
New
IMX571BQR-J
26.1M [3:2] 1.8 3.76 48 SLVS-EC RGB наблюдение DOL HDR *
IMX533CQK-D 9.0M [1:1] 1 3.76 64 SLVS-EC RGB наблюдение DOL HDR *
New
IMX485LQJ/LQJ1
4K UHD 1/1.2 2.9 90 MIPI CSI-2 RGB наблюдение

Блокировка ТВ Sony, Oled мониторы, 3D ноутбуки, телевизор на аккумуляторе!

Quad Bayer Coding
HDR

Источник: market-cctv.ru

Распиновка разъема lvds матрицы

No Image

Привет! Достаточно часто приходят на ремонт ноутбуки с проблемами вывода изображения на дисплей. Естественно нельзя списать все поломки связанные с выводом изображения исключительно на LVDS или EDP интерфейс. Но разобравшись и поняв принцип работы этого интерфейса, проверив его работу путем несложных измерений.

Можно значительно упростить общую диагностику и снизить время, а также стоимость ремонта, исключив ошибочную покупку деталей. Для начала разберемся с теорией, что это вообще за интерфейс, кто придумал, как работает и в чем разница с более новым EDP интерфейсом.

Теория.

Low-voltage differential signaling или LVDS — низковольтная дифференциальная передача сигналов изобретенная и продвигаемая компанией Texas Instruments в 1994 году как дешевый способ передачи данных с использованием двух медных проводников обвитых друг о друга и позднее названых как «витая пара». Стандартизацию как TIA/EIA-644-A данный способ передачи обрел только 2001 году в связи с отсутствием на тот момент потребности в столь высоких скоростях.

Что значит дифференциальная? Дифференциальная передача означает, что сигнал идет не в виде положительного напряжения относительно земли, а относительно инверсии самого себя на соседнем проводнике. Разница между проводниками пары и есть сигнал. Такой способ передачи показал наибольшую помехоустойчивость на больших скоростях передачи данных. Причем максимальное синфазное напряжение обычно 1.3V, что позволяет использовать LVDS во многих интегральных микросхемах, печатных платах, шлейфах с низким рабочим напряжением.

Дифференциальная передача сигнала используется в SCSI, Ethernet, PCI Express, HDMI, Display Port и даже в USB. Когда скорости одной пары недостаточно, возможно использование нескольких пар, этот принцип используется в PCI Express 1x — 16x. Где ширина шины (количество пар) диктует возможную скорость передачи.

Зная все это, не совсем корректно называть LVDS исключительно дисплейным интерфейсом. Это всего лишь метод передачи сигнала до дисплея используя гибкий провод или шлейф. Поэтому разъемы, шлейфы, матрицы различны по используемым типам подключения. Каждый производитель посчитал необходимым разработать свой тип сопряжения системной платы и дисплея. И что мы имеем — многообразие различных дисплеев, шлейфов, разъемов не подходящих друг к другу, но использующих один принцип передачи сигнала. Блин ребята, просто договоритесь…

Еще по теме:  Инфракрасный порт на телевизоре что это

Так и случилось, в декабре 2008 был доработан и принят стандарт Embedded DisplayPort (eDP) версии 1.0, он был предназначен для использования внутри устройств, например для сопряжения панели дисплея и системной платы ноутбука. Этот стандарт по прежнему использовал дифференциальную передачу, но по другому протоколу и с большей скоростью. Что позволило сократить количество «витых пар».

Внедрены энергосберегающие функции и поддержка плавного изменения частоты развертки, режим Self-Refresh (PSR) и многое другое. Но принцип работы остался тем же, а значит диагностика и ремонт классических панелей и панелей с EDP интерфейсом ни чем особенным не отличается. Разве что, становится проще, ввиду меньшего количества пар и контактов на разъемах.

Диагностика и ремонт LVDS интерфейса матрицы ноутбука, на практике.

Питающие напряжения.

Разобравшись с принципом работы шины данных LVDS, EDP и их отличием, далее расскажу об основных питающих напряжениях на примере матрицы AUO B156XW02.

Наиболее часто в ноутбуках для обеспечения работы дисплея используется условно 3 типа питающего напряжения:

  1. 6-21V (обычно VLED) питание подсветки матрицы. Чаще светодиодной — LED подсветки. А ранее, использовался инвертор — отдельная плата для преобразования низкого напряжение в высокое, необходимое для работы лампы подсветки CCFL. Наподобие бытовых люминесцентных энергосберегающих ламп.
  2. 3.3V (обычно VDD) питание электронных компонентов дисплея. Данное напряжение необходимо для работы активных компонентов панели, процессора и терминации внутренних шин панели.
  3. 3.3V (обычно VEDID) питание EDID — микросхема памяти, содержащая программный код описывающий характеристики панели — модель, разрешение, частота и другие параметры указывающие правильное конфигурирование видеосигнала.

Управляющие сигналы.

К управляющим сигналам можно отнести:

  1. SM шину по которой читается микросхема EDID (обычно это контакты CLK_EDID и DAT_EDID).
  2. Управление подсветкой это ее включениевыключение сигналом VLED_EN и уровень яркости подсветки VPWM_EN.

Сигнал включения подсветки (VLED_EN) представляет собой один контакт появление на котором напряжения, обычно 3.3V является логической единицей, что означает — подсветку включить. Если на этом контакте будет отсутствовать напряжение, подсветка матрицы не будет работать даже если подается основное напряжение на питание подсветки (VLED).

Яркость подсветки управляется шим сигналом (VPWM_EN). Его уровень обычно составляет диапазон от 2.1V до 5.5V. Соответственно чем выше уровень, тем выше яркость подсветки. Отсутствие данного сигнала приводит к отключению подсветки.

Последовательность запуска.

Измерения.

Используя данные диаграммы представленной выше, можно понять последовательность запуска матрицы. Но стоит уточнить один момент, отсутствие напряжения VEDID и чтения микросхемы EDID приводит к отсутствию всех напряжений, и сигналов. Так как, системная плата не считала прошивку панели или матрицы. Исключением может быть напряжение VLED, для работы подсветки дисплея.

Если напряжение VEDID присутствует, микросхема EDID читается (обмен на CLK_EDID и DAT_EDID) а напряжение VDD отсутствует. Это свидетельствует о неверной микропрограмме записанной в матрице (EDID) или неисправной системной плате ноутбука, например узел формирования VDD.

В случае отсутствия чтения EDID. При наличии напряжения VEDID и отсутствии обрывов CLK_EDID и DAT_EDID. Скорее всего виновником поломки является видеопроцессор или видеочип на системной плате ноутбука, реже конвертер видеосигнала EDP-LVDS и другие микросхемы отвечающие за вывод видеосигнала. Все зависит от конкретной реализации системной платы.

Естественно если какое-то напряжение отсутствует или занижено, необходимо проверить соответствующие выводы на предмет короткого замыкания и обрывов. Я обычно ставлю мультиметр на измерение сопротивления и проверяю относительно «земли». Что касается проверки линий данных EDID и LVDS, их по возможности смотрят осциллографом на предмет «активности» (пульсаций). За неимением осциллографа можно измерить сопротивление и напряжение относительно «земли». На линиях данных EDID сопротивление не должно быть ниже 100 kOhm, а напряжение приблизительно 3.3V. LVDS — напряжение

1.2-1.3V и сопротивление относительно земли не менее 1 mOhm. Встречаются отклонения, но понятно, что скажем сопротивление в 200 Ohm на линиях данных недопустимо, это свидетельствует о поломке.

При проверке линий LVDS, все пары обычно имеют одинаковые показатели по сопротивлению и напряжению сигнала, так как терминируются от одного источника. В случае если одна из пар пробита «на землю» мы получим «квадрат Малевича» или артефакты на изображении (если повезет, например, картинку через пиксель). Чаще видеосигнал просто блокируется.

Помимо поломок связанных с напряжениями и сигналами, встречаются обрывы GND (Ground — «земли или общей массы, как вам удобнее») или высокое сопротивление относительно GND системной платы. Проверяется это с подключенными компонентами (дисплей, шлейф, системная плата). Мультиметром, в режиме измерения сопротивления одним щупом встаем на GND платы, другим на GND матрицы. Должно быть не более 100 Ohm, так же пробуем во время измерения сгибать шлейфик в местах изгиба и смотреть показания прибора.

И всегда, в диагностике и ремонте необходимо отталкиваться от особенностей реализации схемы системной платы и дисплея, по возможности разумеется.

Конвертеры и переключатели видеосигнала.

Конкуренция, продвижение более новых компонентов, энергосберегающих технологий толкает разработчиков компонентов и системных плат к использованию различных конвертеров, и переключателей видеосигнала. С переключателями вроде все более или менее понятно, если используется 2 видеопроцессора Intel и NVIDIA например, микросхема берет на себя роль переключателя и в нужный момент (при запуске игры) подключает матрицу к высокопроизводительному видеочипу. При переходе на питание с батареи — наоборот. Если на системной плате установлен переключатель, источником управляющих сигналов чаще всего являются оба видеопроцессора и все управляющие сигналы запараллелены.

А вот, конвертер это своего рода активный переходник видеосигнала в корпусе маленькой микросхемы. Вы спросите, зачем? Затем, что производители вынуждены экономить, ставя более старые комплектующие к новым. Матрицу старого образца к современному видеопроцессору работающему только с EDP сигналом. В таких случаях все сигналы необходимо измерять «до» и «после» конвертера.

Еще по теме:  Как узнать канделы телевизора

Конвертер в данном случае является источником видеосигнала для матрицы, чтение EDID и управление подсветкой идет из него. А для системной платы, конвертер это — матрица с EDP интерфейсом! В случае поломки и ремонта, получается, двойная работа!

Заключение.

В заключение из всего рассказанного выше, хочется напомнить, что данный материал носит ознакомительный характер и совсем не руководство к действиям. Думаю, эта статья поможет интересующимся и остановит от нежелательных действий безрассудно поверивших в свои силы. Расскажет об общих объемах работ и знаний, необходимых для выполнения ремонта ноутбуков с поломками связанными с выводом изображения.

Ставьте лайки, делайте репосты, подписывайтесь на мою группу вконтакте для получения актуальных постов. Спасибо за уделенное моей статье время, очень надеюсь что был полезен! Всем счастья!

Источник: 4systems.ru

Разработка скалера LVDS с двумя интерфейсами DisplayPort

Описание проекта платы скалера, разработанного на чипе компании Realtek – RTD2662, для двухканальной матрицы. Кому тема интересна, добро пожаловать под кат.

Меня всегда привлекала тематика вывода изображения на матрицы. Ранее мной была разработана плата скалера на чипе TSUMV59 (совместима с TSUMV29), очень интересный экземпляр от компании MStar. Думаю, что я напишу отдельную статью на эту тему. Казалось бы, все хорошо в этом чипе, но чего-то не хватало, а именно возможности писать свой софт для вывода экранного меню и обработки GPIO.

Все прошивки распространяются в бинарном виде и прошиваются через USB, а исходников найти не удалось (если кто-то что-то знает/слышал, прошу написать, так как тема очень интересна). До определенного времени для каких-то своих нужд этого вполне хватало.

Были моменты, когда было не подобрать прошивку для какой-то конкретной матрицы, например с нестандартным соотношением сторон, но это все мелочи, пока не появился заказ на разработку устройства, в котором должно было быть строго определенное меню, логотип, и логика работы устройства в целом. Тогда мы начали думать как быть и в какую сторону идти. Основной проблемой было отсутствие времени, нужно было в кротчайшие сроки получить первую партию устройств – 100шт. Второе – это наличие двух интерфейсов DisplayPort на борту. Третье – малое количество устройств, что не позволяет работать/получать документацию и семплы от производителей/дистрибьютеров чипов.

Перечислю основные программные/аппаратные моменты, которые требовалось поддержать:

— DisplayPort – 2 шт;
— Ethernet 10/100 – 1 шт;
— Двухканальный LVDS для 32” матрицы – 1 шт;
— Поддержка емкостной клавиатуры из 4-х кнопок – 1 шт;
— Датчик температуры на плате – 1 шт;
— WEB-интрефейс;
— OS Linux;
— Внешнее питание 24В.

Теперь немного обо всем и по порядку.

DisplayPort

Тут казалось все относительно просто, нужно выбрать чип с входным HDMI, ставить переключатель и преобразователи из DisplayPort в HDMI. Этот же чип должен иметь выход двухканального LVDS на матрицу и поддерживать FullHD. Также, желательно, чтобы он имел на борту RMII (Ethernet) и возможность отрисовки меню поверх изображения. И тут начались проблемы. Ничего похожего, чтобы можно было быстро купить, отмакетировать и запустить партию, найти не удалось.

В качестве хобби, я занимаюсь ремонтом техники и дело тут не в доходе, а в приобретаемых навыках, очень полезных при разработке своих проектов и черпании идей и технологий. Кто разбирал оригинальную технику Sony и Panasonic, тот поймет. Особенном меня привлекают аудио/видео/автомобильные устройства. Качество прокладки полигонов (даже на верхних слоях), аналоговые земли и питания, взаимное расположение питателей на плате, трассировка оперативки, ВЧ … голова кругом от того, как красиво и продуманно все сделано (конечно, так бывает не всегда).

Ладно, о чем это я? Так вот, если вспомнить что обычно ставят в бюджетные телевизоры, первое что пришло на ум – это TSUMV29/TSUMV59, но как помним они нам не подходят. На чем еще делают телевизоры и мониторы, но что можно штучно купить? Коллега предложил Realtek, что вроде даже к нему есть исходники, что очень упростит задачу. Оказалось, что исходники действительно есть для Keil, для чипа RTD2662. Чип не самый новый, но имеет два HDMI входа и поддержку FullHD.

Рис.1. RTD2662

Схема включения как во всех шасси для ТВ. Чип питается двумя напряжениями – 3,3В и 1,8В. Полноценного даташита найти так и не удалось, да и не нужно было. Добавить нужно было только конвертеры из DisplayPort. После непродолжительных поисков был выбран преобразователь от Texas Instruments – SN75DP139. Рекомендую в разработках, хороший чип.

Микросхемы расположены на bottom платы (сделать так пришлось, чтобы избежать перекрестия линий данных, возможно буду пробовать переразводить на одной стороне).

Рис.2. Схема включения SN75DP139

Схема включения получилась такая. С интерфейсом DisplayPort связался впервые и для меня стало неким откровением что вход и выход данного интерфейса имеют разную распиновку, то есть на разъеме ПК она одна, на мониторе – другая. Хотя какая-то логика в этом и есть.
Прошивка Realtek хранится в отдельной SPIFlash.

Ethernet 10/100

Ethernet нужен для нескольких вещей: мониторинг устройства, конфигурирование и обновление; поэтому физики 10/100 вполне достаточно. Ставил LAN8742AI от Microchip, использовал ее впервые, а выбрал именно ее, так как заказчику нужна была некая функция “Wake on LAN”, до этого такой надобности не было. Если в двух словах, то поддержка WoL позволяет пробуждать устройство по сети Ethernet.

Еще по теме:  Пульт телевизора полар инструкция по применению

Рис.3. Ethernet 10/100

Физика почти не требует обвязки и проста в трассировке. Работает стабильно, ни одного отваливания сети не было.

LVDS

Два канала необходимы для подключения матрицы AUO 32”. Разъем и распиновку использовал стандартные. Напряжение питания 12В, делал на DC/DC TPS54560DDAR – это отличный питатель на 5А от TI. Подсветка матрицы 24В, брал от входного напряжения. Матрица имеет встроенный драйвер подсветки с возможностью регулировки и выключения.

Плата сделана на 4-х слоях, так что проблем с трассировкой LVSD, HDMI и DisplayPort не было.

Рис.4. Трассировка LVDS

Как видно тут все напрямую, небольшое расхождение длин совершенно не влияет на качество изображения.

KEY

Кнопки реализованы на микросхеме SX8634 от Semtech Corporation – это несколько неоднозначный по своей работе чип. Программистам пришлось перепиливать весь драйвер чтобы получить ожидаемый результат. Получилось как-то так: есть 4 кнопки для перехода по меню, они сенсорные (емкостные через стекло) с подсветкой RGB светодиодами изнутри через отверстия в плате.

Постоянно светится только нижняя кнопка, она же переход в спящий режим и обратно (со сменой свечения). При поднесении руки на 5см подсвечиваются остальные кнопки и выскакивает меню напротив них. Убираем руку, через 3с меню пропадает, кнопки гаснут. Выглядит интересно.

Рис.5. Плата сенсорных кнопок

Верхняя часть платы (top) прилегает к стеклу, поэтому на ней нет компонентов, все они располагаются на bottom. Сложность в настройке и калибровке была обусловлена шириной платы, она всего 12мм. Если кому-то скучно жить, могут использовать данную микросхему в своих проектах.

TEMP

Температура внутри корпуса измеряется с помощью термодатчика LM75AD от NXP по шине I2C. Поставлен был так как легко доставаемый и лежит на складах в больших объемах.

WEB

Web-интерфейс и сам проект реализованы на основе молодого движка рожденного независимой командой 11-parts — это наш партнер по разработке ПО для систем на базе Linux.
Платформа имеет множество блоков, обеспеченные технической поддержкой и гарантией с возможностью доработок и обновления.

Если еще проще – это рамочный проект, с продвинутым функционалом, который постоянно улучшается и наращивает функционал. Из основных блоков можно отметить сетевой менеджер, динамический WEB интерфейс, обновление и сборщик проектов. На базе движка, можно реализовать различные устройства начиная от mp3 плеера, заканчивая многопортовым 10Gbit SIP сервером. а это как раз то, что нам было необходимо в данном проекте.

Из web-интерфейса можно не только контролировать параметры панели, но и изменять настройки, например, яркость, контрастность, четкость изображения, отслеживать к какому из портов подключен ПК и какой в данный момент из них активен, переключаться между ними.

Также в данном проекте реализована поддержка SNMP 1,2 и 3 версии с поддержкой SET, GET команд и отправкой трапов по интервалу или по событию. Т.е. информацию о любом параметре, например яркость/контрастность можно передавать на сервер по протоколу SNMP, при нажатии на кнопку изменения параметра или, например, раз в 10 сек. Выключить дисплей или поменять параметр можно удаленно с помощью SNMP SET команды. SNMP так же входит в состав движка.

iMX6ULL

Так как чип Realtek не имеет на борту Ethernet, в данном проекте установлен процессор iMX6ULL от NXP, на котором крутится OS Linux и выполняется основная логика работы. iMX и Realtek связаны между собой по UART и обмениваются между собой командами. Для быстрых событий есть несколько GPIO.

Рис.6. iMX6ULL

Вся информация хранится в NAND, u-boot загружается из SPIFlash. Одна микросхема оперативной памяти и ничего лишнего. SD карта выведена для обновления ПО (это помимо возможности это делать из web).

POWER

Вторичное питание 5В реализовано на таком же DC/DC как и для питания матрицы – TPS54560DDAR. Питания 1,8В и 1,35В на AP3418 от Diodes, а 3,3В на ST1S10PHR от ST.

Рис.7. DC/DC

Микросхемы DC/DC были выбраны с большим запасом, так как у матрицы большие пиковые токи по питанию и по подсветке, а так как была только одна итерация, рисковать очень не хотелось.
Все питания разведены полигонами в отдельном слое, за исключением питания матрицы, так как очень не хотелось резать основные питания этим проводником. Скрины трассировки приводить бесполезно, разве что кому-то будет интересен какой-либо интерфейс. По полигонам питания и земель хочу также уделить отдельную статью, например, в этом проекте суммарно 27 полигонов, в моем новом проекте на iMX7 из будет порядка 100, и в рамках этой статьи это просто не поместится.

Если еще немного углубиться в логику работы платы. iMX работает с Ethernet и кнопками передней панели. Он связан с Realtek, которые забирает изображение с активного DisplayPorta и выдает на матрицу LVDS. Команды от кнопок, SNMP и web летят в Realtek, которые в свою очередь реагирует на них и меняет параметры дисплея, выводит меню и т.д.

В итоге получился довольно интересный проект за короткие сроки. Наверное, он содержит в себе слишком много модулей, но на момент разработки, по моему мнению, это было оптимальным решением в соответствии со сроками, затратами и рисками.

Спасибо за внимание!

  • Производство и разработка электроники
  • DIY или Сделай сам

Источник: habr.com

Оцените статью
Добавить комментарий