Что такое дешифратор в телевизоре

В компьютеризированных системах управления, ЭВМ и цифровой технике одними из важнейших элементов построения электронных микросхем являются дешифраторы. Так, дешифратор (или декодер) – это логическое комбинационное устройство, служащее для преобразования двойного двоичного кода в сигнал управления в десятичной системе исчисления на одном из выходов.

Принцип работы дешифратора

Обычно дешифратор имеет n-входов и 2n выходов, при этом n — разрядность дешифрируемого кода. Определенной комбинации на входе соответствует активный сигнал на одном из выходов, или при сигнале «00» — мы имеем «1» на нулевом выходе схемы; при «01» имеем — «1» на первом выходе, сигнал «10» трансформируется в 1 – на втором выходе и т.д. Другими словами, эти элементы схем могут преобразовывать двоичный код в различные системы исчисления (это может быть десятичная, шестнадцатеричная и пр.), поскольку все зависит от конкретной задачи, выполняемой микросхемой.

В стандартные типы дешифраторов входят модели на 4, 8 и 16 выходов, при этом на выходе — 2, 3 и 4 разрядов входного кода. Входы дешифраторов называют часто адресными, и на схемах нумеруют 1,2,4,8, при этом цифра соответствует весу двоичного кода. Сигнал на выходе 1,2,4,8 устанавливает номер активного выхода. С1,С2 – входы разрешения (или стробирования), которые работают с условием «и».

Шифраторы, дешифраторы. Назначение, принцип работы, типовые схемы.

Сигнал на этом входе сообщает о моменте срабатывания дешифратора. Также их можно использовать для увеличения разрядности логических устройств.

Основные разновидности дешифратора

Существует несколько разновидностей дешифраторов:

Матричные являются типовыми, наиболее простыми разновидностями дешифраторов, на их основе строятся различные более сложные схемы. В прямоугольных реализуется ступенчатая дешифрация. Входной сигнал условно разбивается на группы, каждая из которых обрабатывается отдельными матричными дешифраторами. На последующих ступенях дешифрации (второй, третьей и т.п.) формируется произведение полученных сигналов. Главным преимуществом пирамидальных дешифраторов считается простота наращивания числа входов, а недостатком – аппаратная неизбыточность.

Особенности дешифраторов

Выпускают дешифраторы по виду интегральных микросхем. К примеру, К500ИД162М – позволяет трансформировать двоичный код в восьмеричный. Другие типы дешифраторов могут преобразовывать двоичное исчисление в десятеричное (К176ИД1 и К155ИД1). Отечественной промышленностью выпускаются дешифраторы со счетчиками, они позволяют управлять семисегментными цифровыми индикаторами. На микросхемах их обычно обозначают буквенным сочетанием ДИ.

Принцип работы дешифратора

Дешифраторы используются для преобразования двоичных чисел в десятичные числа и находят применение в печатающих устройствах. В таких устройствах двоичное число, поступая на вход дешифратора, вызывает появление десятичного числа только на одном определённом его выходе. На рис.9.11 приведено символическое изображение дешифратора и его таблица истинносити.

Как приклеить шлейф ЖК матрицы. Восстановление шлейфа дешифратора. Пример телевизор ЖК BBK

Символ DC образован от английского слова Decoder. Слева показаны входы, на которых отмечены весовые коэффициенты двоичного кода, справа выходы десятичных чисел. На каждом входе образуется десятичное число при определенных комбинациях входного кода.

Рис.9.11. Символическое изображение дешифратора и его таблица истинности

Рассмотрим построение дешифратора по его таблице истинности.

Значения входных переменных определяются логическими выражениями:

y7 =8 ^ x4^ x2 ^ x1,

y9 = x 8 ^4 ^ 2^ x 1.

Используя логические выражения (9.1), построим логическую схему дешифратора.

На рис.9.12 показана логическая схема дешифратора, построенного на логических элементах И и инверторах НЕ.

Рис.9.12. Логическая схема дешифратора

Дешифраторы и индикаторы

Для удобства использования оператором число, записанное в регистре или счетчике в двоичной системе необходимо перевести в удобную форму записи в виде арабских цифр. Данная операция производится с помощью дешифраторов, которые превращают двоичную запись так, чтобы на каком – либо индикаторе отображалась та или другая цифра. Рассмотрим для начала принцип построения индикаторов.

Рассмотрим на примере жидкокристаллического индикатора, который широко применяется в микрокалькуляторах, электронных часах и прочих устройствах. Схема этого индикатора приведена ниже:

Под действием электрического поля сем элементов, которые создают цифру «8», путем изменения своей прозрачности. Если к примеру, подать напряжение между элементом 0 и тремя соединенными вместе элементами 2,3,5, получим цифру 7, при соединении вместе элементов 3 и 5 получим 1. При различных комбинациях будет получать различные цифры на табло.

В цифровых вольтметрах и прочих лабораторных установках широко применяют газоразрядные индикаторы, показанные ниже:

В стеклянном баллоне содержится цилиндрический металлический анод, внутри которого на двух изолированных стойках набраны электроды с тонкого металлического провода в виде цифр от нуля до девяти (на рисунке выше показаны только четыре первых). Баллон заполняют инертным газом, например неоном. Если приложить между анодом и каким – то из этих электродов напряжение (минус к цифре из провода), то в колбе появится тлеющий разряд, во время которого поверхность катода (то есть цифры) будет ярко гореть. Электроды, на которые напряжение не подано, обычно не светятся, но так как они выполнены из тонкой проволоки они не будут мешать видеть через стекло ту цифру, которая в данный момент светится. Устройство, которое будет подавать логическую единицу на нужный электрод и будет называться дешифратором.

Одна из возможных схем дешифратора приведена ниже:

Слева вертикально размещены триггеры двоично – десятичного счетчика. Каждый из триггеров имеет два выхода – прямой и инверсный (

Еще по теме:  Телевизор это прибор или инструмент

во втором и так далее ). Сверху изображен горизонтальный ряд логических элементов типа «И», которые имеют по четыре входа каждый. Их выходы (X0, Х1 и так далее) соединены с соответствующими электродами газоразрядного индикатора. Схема должна работать таким образом, чтоб при наличии на триггере счетчика конкретного числа логическая единица была только на выходе того элемента, что соединен с соответствующим электродом индикатора, а на входах других элементов (то есть и на других электродах индикатора) должны быть логические нули.

Приведенная выше схема соединения (с учетом пунктирных связей) обеспечивает данные требования. Так, при записи в триггерах цифры 5 (в двоичном коде 0101), на выходе первого разряда будем иметь

Внимательно присмотревшись к схеме соединения увидим, что у всех логических элементов кроме пятого, хоть на одном из четырех входов будет ноль, а поэтому и на их выходах будут нули, и только у пятого элемента на всех четырех входах будут единицы. Можно убедится, что и при других цифрах в счетчике логическая единица будет только на соответствующем электроде индикатора. Стоит учесть, что дешифратор построен для счетчиков с естественным порядком подсчета.

Источник: principraboty.ru

Декодирование сигналов мультиплексированного ЖКИ

В этой статье я расскажу о том, как работает жидкокристаллический индикатор (ЖКИ) с точки зрения сигналов, как эти сигналы декодировать и использовать для своих целей.

Иногда возникают вопросы, связанные с эксплуатацией ЖКИ. Например, потек экран устройства, а заменить не на что:

Или экран ЖКИ очень маленький, в темноте его не видно, и стоит задача преобразовать вывод вместо ЖКИ на светодиодный или другой дисплей.

Встречал еще такую проблему: имеется кондиционер, и для улучшения его эксплуатационных характеристик необходимо включать дополнительный вентилятор при появлении на экране символа «снежинка».

Таких вопросов, думаю, придумать можно много, и стоит общая задача — научиться декодировать информацию, выводящуюся на ЖКИ, и использовать по своему назначению.

Жидкокристаллические индикаторы ввиду своих физических особенностей требуют выполнения двух главных требований:

  1. Напряжение между электродами должно быть не менее трех вольт.
  2. На электроды необходимо подавать переменное напряжение без какой-либо постоянной составляющей.

Если же не выполнить второе требование, то индикатор может довольно быстро деградировать (испортятся жидкие кристаллы). Индикаторы первых выпусков особенно сильно страдали от невыполнения второго требования, и вполне могла возникнуть ситуация, когда у пользователя на индикаторе навсегда оставалось время, когда в часах села батарейка.

В жидкокристаллическом индикаторе используются общие и сегментные электроды. Сегментные электроды находятся с одной стороны ЖКИ, общие — с противоположной. Между ними расположены жидкие кристаллы. Если подать переменное напряжение, то жидкие кристаллы изменят свою плоскость поляризации и, с учетом поляризационных фильтров по сторонам индикатора, не будут пропускать сквозь себя свет, и сегмент будет отображаться черным цветом.

Вот фотография индикатора калькулятора, где видны электроды.

Как я говорил, между сегментным и общими электродами необходимо подавать переменное напряжение. Его частота должна быть более 30 герц. Вместо синусоиды подают либо сигналы специальной формы, либо меандр (меандр — это периодический сигнал прямоугольной формы, в котором длительности импульса и паузы равны), который тоже можно с некоторым допущением считать упрощенной синусоидой.

Самые простые ЖКИ имеют один общий электрод. Количество выводов в индикаторе равно количеству сегментов плюс общий вывод.

На общий вывод подается меандр. А на сегментные — тоже меандр. Отличие состоит в том, что если сегмент должен отображаться, то меняются местами импульс и интервал (фаза, относительно сигнала общего электрода). Если сегмент не должен отображаться, то фазы совпадают.

С точки зрения индикатора, когда совпадают фазы, то между электродами напряжение всегда 0 вольт. А если фазы не совпадают, то между электродами напряжение всегда переменное и равно 3 вольтам.

Вывод на индикатор с одним общим электродом довольно прост, но если количество сегментов велико, то соответственно увеличиваются затраты как на разводку индикатора, так и на резервирование соответствующего количества выводных портов на контроллере.

Чтобы уменьшить количество сегментов используют два или более общих электродов. С одной стороны это в разы уменьшает количество сегментных выводов, но с другой стороны усложняет вывод с точки зрения генерации сигналов. Идея в мультиплексировании сигналов заключается в том, что один сегментный вывод отвечает за отображение двух и более сегментов.

Если в индикаторе с одним общим сигналом один сегмент управляется постоянно, то при мультиплексировании количество интервалов времени, когда управляется один сегмент, делится на количество общих сигналов. То есть сначала управляются (отображаются или гасятся) сегменты с общим сигналом COM1, в следующий интервал времени управляются сегменты, связанные с общим сигналом COM2 и т. д. по количеству общих сигналов.

Поскольку интервалы времени, когда управляется один сегмент, сокращается, то соответственно сокращается время его отображения, и чем больше общих сигналов, тем меньше контрастность изображения в целом.

Вместо простого меандра при нескольких общих сигналов необходимо подавать сигналы специальной формы с промежуточными напряжениями. Промежуточные напряжения нужны для того, чтобы выполнялись те два требования, которые я описал выше.

Еще по теме:  Как зайти в браузер на телевизоре LG

Я снял небольшое видео, где можно на осциллографе посмотреть осциллограммы с реальных часов с одним общим электродом и калькулятора с тремя общими.

Это часть схемы микрокалькулятора «Электроника МК-62». В индикаторе используются три общих электрода. На схеме видна разводка общих и сегментных электродов.

Полная схема доступна по ссылке.

Для удобства я расцветил область ответственности общих электродов. На схеме общие электроды обозначены как О1, О2 и О3.

Сегментные я тоже раскрасил, чтобы было удобно видеть, за какие сегменты отвечают сегментные выводы.

Эпюры формы импульсов сигналов, подаваемые на сегментные и общие выводы, на первый взгляд кажутся жуткими. Но если разобраться, то можно понять, как это работает:

Первые три эпюры соответствуют общим электродам. Я их расцветил соответственно рисунку индикатора на схеме.

Нас будут интересовать только раскрашенные «полочки» сигналов, уровни которых находятся на вершинах осциллограмм. Это те моменты, когда управляются (отображаются или гаснут) сегментные выводы.

В этих эпюрах видно, что сначала внизу «работает» общий О2, затем полочка у О1, потом у О3. После этого полочки так же (только наверху) сначала у О2, затем у О1 и дальше — О3. Так они и чередуются, соблюдая условие переменного напряжения.

Теперь, когда «расшифрованы» эпюры общих сигналов, можно посмотреть на эпюры сегментных сигналов, которые я тоже раскрасил. Эти эпюры от реального отображения на индикаторе цифры 0. (с точкой) в первом знакоместе.

Форма импульсов сегментных и общих сигналов выбрана с расчетом выполнения первого требования — напряжение между электродами должно быть равно трем вольтам. Жидкие кристаллы и поляризационные фильтры проектируются с таким расчетом, чтобы отображаться только при трех вольтах, а если напряжение ниже, то сегменты не будут видны.

Вы можете самостоятельно разобраться, какие конкретно сегменты будут показываться или гаснуть при приходе соответствующих им общих сигналов.

Теперь — после того, как мы разобрались с принципом отображения сегментов, можно сделать довольно простой декодер.

Когда я писал, что между электродами необходимо подавать переменное напряжение, это верно и правильно, но только с точки зрения электродов. Воспользуемся открытием великого Эйнштейна, которое гласит: «все относительно», и привяжемся к одному из полюсу сигналов (отрицательному). Все остальные уровни автоматически станут положительными.

На показанной выше схеме разработчики уже ушли от разнополярного напряжения и сделали сигналы с уровнями 0 и -3 вольта.

Поскольку логика нашего устройства — положительная, то будем считать, что напряжение, показанное в схеме как -3 вольта, в нашей схеме будет равно нулю, а напряжение 0 вольт — плюс три вольта.

В нашей схеме, когда приходит нижняя полочка, то это будет 0 вольт (сигнал GND — земля). Когда приходит верхняя полочка — это +3 вольта. А остальные напряжения сделаны для формирования синусоиды, и мы будем их игнорировать.

Нам необходимо применить два компаратора. Компаратор работает просто: у него есть два входа (положительный и отрицательный) и один выход. Когда напряжение на положительном входе больше, чем на отрицательном, на выходе появляется единица, и наоборот — когда на положительном выходе напряжение меньше, чем на отрицательном, то на выходе — ноль.

Первый компаратор (зеленая линия) будет отслеживать приход верхней полочки общего сигнала. Второй компаратор (красная линия) будет отслеживать приход сегментного сигнала. Уровень зеленой линии подается на отрицательный вход первого компаратора, а уровень красной линии — на отрицательный вход второго компаратора.

На положительные же входы компараторов подаются соответственно общий сигнал и сегментный сигнал. Уровень общего сигнала выбран наверху, а сегментного — в нижней части — для того, чтобы «поймать» момент, когда сегмент отображается (те самые 3 вольта). В других случаях он не отображается. Обратите внимание на самую нижнюю эпюру в схеме калькулятора — те моменты, когда остальные сегменты не горят — там сигналы не доходят ни до верхнего, ни до нижнего уровня.

В результате в момент желтой вертикальной линии на выходах компараторов мы поймаем три вольта разницы между сигналами, когда сегмент горит, и 0 вольт, когда не горит.

Итак, мы поймали момент, когда нужный сегмент отображается (или гасится). Теперь этот момент надо зафиксировать. Для фиксирования этого момента будем использовать регистр с защелкой типа 74HC374. На вход регистра подадим сигнал от компаратора № 2, где отследили сегментный сигнал, а на тактовый вход защелки — выход с компаратора № 1, где начнется логическая единица в момент прихода нужного нам общего сигнала.

После того, как регистр защелкнется по положительному скачку входа CLK, на его выходе сигнал не будет изменяться до нового прихода положительной полочки нужного нам общего сигнала.

Для отслеживания одного сегмента (пусть это символ снежинки) схема будет выглядеть так:

Здесь на схеме компаратор U1 отслеживает нижнюю полочку сегментного сигнала, у которого уровень будет ниже, чем установлено на переменном резисторе RP1, и ставит ноль на его выходе. Второй компаратор отслеживает приход верхней полочки общего сигнала и положительным фронтом защелкивает регистр.

Конденсатор C1 необходим, чтобы немного задержать детектирование общего уровня и сместить момент фиксации не в самом начале общего уровня (в это время сегментный может запоздать или будут какие-то переходные процессы), а немного спустя (на рисунке — желтая линия в середине полочки). На выходе регистра будет логический ноль, когда сегмент отображается, и логическая единица, когда сегмент не отображается.

Еще по теме:  LG 43lm5500pla отзывы телевизор

Такая схема нужна для детектирования каждого сегмента. Основная сложность такой схемы — для каждого сегментного и общего сигнала необходим отдельный компаратор, и количество выходов регистров равно количеству сегментов. Но с другой стороны все эти компараторы и регистры сейчас стоят копейки.

Чтобы упростить работу и проверить работоспособность всего, что я написал, я смастерил небольшую платку, на которой развел несколько компараторов и регистров.

Описание схемы такое же, как и для одного сегмента, только умноженное на 16 сегментных и один-два общих сигнала (количество выбирается перемычкой).

В плате предусмотрены транзитные входы-выходы питания и уровней компараторов, чтобы сэкономить на деталях и настройке.

Вот еще одно видео, где описывается работа этой платы и показывается, как работает детектирование:

Детектирование калькулятора интересно только в академических целях, а для себя на базе этих плат сделал реальное устройство — светодиодные часы на базе советских часов «Электроника 55».

В часах довольно много сегментов, и пришлось использовать четыре платы.

Эти платы также позволяют мультиплексировать выходы регистров. То есть выходы каждого регистра можно объединить в одну 8-битовую шину. В платах предусмотрено отключение выходов (нога 1 у каждого регистра).

Для отключения на каждый регистр подается логическая единица (например, с микросхемы-мультиплексора типа 74HC137), а на тот регистр, с которого надо снимать данные — логический ноль. Тогда, поочередно выбирая нужный регистр, можно считывать данные с шины ЖКИ, например, другим микроконтроллером, и дальше обрабатывать по своему усмотрению. Причем выборку можно производить асинхронно от схемы декодирования с любой скоростью.

Вот таким образом можно считывать информацию с LCD и использовать в своих целях. Спасибо за внимание.

  • DIY или Сделай сам
  • Электроника для начинающих

Источник: habr.com

Значение слова декодер

декодер

декодер

декодер в общем случае — некоторое звено, которое преобразует информацию из одного внешнего вида в другой вид, применяемый в каком-нибудь устройстве. В программном обеспечении: модуль программы или самостоятельное приложение, которое преобразует файл или информационный поток из внешнего вида в вид, который поддерживает другое программное обеспечение.

Википедия

декодер

I м.Электронное устройство для автоматической расшифровки сообщения, передаваемого условными знаками ( кодом, шифром и т.п. ) , и перевода содержащейся в нем информации на язык воспринимающей системы; дешифратор ( в информатике ) . II м.Техническое устройство, позволяющее получать телевизионный сигнал на домашний ТВ через телефонную сеть, заказывать кинофильмы из электронного банка данных и т.п.

Большой современный толковый словарь русского языка

декодер

комп. быт. программа для преобразования сигнала. Декодер DVD — программа и устройство для вывода видеосигнала на экран

Новый словарь иностранных слов

декодер

дек`одер, -а

Словарь русского языка Лопатина

декодер

(от де … и код) в системах цветного телевидения, дополнительное устройство (блок), подключаемое к телевизору цветного изображения какой-либо системы (напр. системы СЕКАМ), позволяющее воспроизводить на его экране в цвете изображение, передаваемое или записанное по другой системе цветного телевидения (напр., по системе ПАЛ). Во многих современных моделях телевизоров такое устройство конструктивно объединено с блоком цветности (напр., декодер ПАЛ/СЕКАМ).

Современный толковый словарь, БСЭ

декодер

декодер, -а

Полный орфографический словарь русского языка

декодер

устройство или программа, восстанавливающая информацию из закодированного вида (см. код)

Викисловарь

Примеры употребления слова декодер в тексте

Тот смутился, но уже очень скоро радостно воскликнул, что по сути это не проблема, следует только внедрить в мозг декодер с датчиком, где-нибудь в довольно простом месте другой датчик, в который и станет возможно внедрить иглу, а уж он пошлет данные декодеру .

Вы у меня собирали болгарскую спальню и кухню, ремонтировали в прошлом году диван, а мой сын Виталик ставил вам декодер на телевизор.

Он делает вид, что не понимает, хотя декодер исправно переводит человеческую речь на их гавкающий язык.

И вспыхивает на пересеченных плоскостях удивительная радуга, и декодер внезапно переходит в текстовый режим: «Меня отсекают, хозяин!»

Меня, десятилетнего оболтуса, тошнило от учебных программ, и я быстро наловчился перенастраивать декодер на развлекуху.

Относительно значения цветов, ему трудно было судить, декодер компьютера включал то инфракрасное, то рентгеновское, а то и какое-нибудь другое излучение, подбирая ключ для возможности зрительного восприятия.

Если же вы переключаетесь на потоковое видео из Сети, то оно автоматически направляется на соответствующий декодер – ядро чипа располагает достаточной мощностью, чтобы программно декодировать практически любой из существующих форматов.

Обе основаны на чипе Broadcom BCM2835 — это ARM11, работающий на частоте 700 МГц и имеющий поддержку видео (разрешение до 1080p, OpenGL ES 2.0, аппаратный декодер H.264), на обе платы устанавливается 256 МБ оперативной памяти.

Чтобы наглядно продемонстрировать эффективность избранного подхода, исследователи сконструировали на его основе «байесовский декодер «, скомбинировав модели оценочного кодирования с образцами предварительно просмотренных человеком кинофильмов.

Источник: xn--b1advjcbct.xn--p1ai

Оцените статью
Добавить комментарий