Что такое импульсный блок питания для телевизора

Подавляющее большинство современной электроники работает на постоянном токе с малыми значениями силы и напряжения. Например, роутеры потребляют 12 вольт и 5 ампер, а смартфоны в большинстве случаев – 5 вольт и 2 ампера. Вот только в бытовой сети распространяется совершенно другой ток – переменный, с частотой 60 Гц, напряжением 220 вольт и (обычно) силой до 6 ампер.

Соответственно, для использования электронных приборов в бытовой сети этот ток надо как-то преобразовать. Для этих целей и используются блоки питания. Их задача – трансформация тока для придания ему определённых параметров напряжения, силы, а также частоты (превращения переменного в постоянный).

И если требуется выбрать подходящий блок питания либо соорудить самостоятельно, то чаще всего можно встретить два варианта – обычный, он же трансформаторный, и импульсный. И в чём разница, кроме конструкционной сложности, не всегда понятно. Поэтому в этой статье мы разберёмся, чем отличается импульсный блок питания от обычного, рассмотрим их особенности и отличия.

Импульсный блок 240 Ватт из старого телевизора

Обычные блоки питания (трансформаторного типа)

Обычные блоки питания

Трансформаторные блоки питания – одни из первых устройств для преобразования электричества. Они относятся к аналоговому типу, отличаются конструкционной простотой и сравнительно высокой надёжностью. Впрочем, и существенные недостатки вроде слишком крупных габаритов у них также имеются.

Основной функциональный элемент таких БП – трансформатор. Он состоит из двух индукционных катушек. На первую подаётся электричество из бытовой 220-вольтовой сети и создаёт электромагнитное поле. Оно, в свою очередь, наводит индукцию и создаёт электродвижущую силу на второй. Таким образом достигается понижение напряжения.

В дальнейшем электрический ток, созданный на понижающей катушке, передаётся на выпрямляющее устройство. Как правило, оно состоит из нескольких силовых диодов, включённых по схеме моста. Для сглаживания пульсирующего напряжения используется конденсатор, подключённый параллельно диодному мосту, а затем силовые транзисторы его стабилизируют.

В итоге на выходе формируется постоянный ток заданного напряжения и силы. Для регулирования параметров его работы используются специальные резисторы подстройки, включаемые в схему стабилизации.

Обычные БП (трансформаторного типа) характеризуются максимальной конструкционной простотой. В принципиальной схеме элементарного устройства – всего три детали: система катушек, диодный мост и конденсатор.

Ключевые достоинства обычных блоков питания:

  1. Простота сборки и конструирования. БП необходимой мощности можно собрать самостоятельно – достаточно лишь понимать принцип работы и точно осознавать, для каких целей планируется использовать аппарат;
  2. Высокая надёжность и долговечность. При правильной эксплуатации срок работы аппаратов практически не ограничен. Так, сегодня ещё можно найти функционирующие модели, выпущенные более нескольких десятилетий назад;
  3. Доступность комплектующих. Все необходимые детали можно приобрести на радиорынках, у радиолюбителей и в специальных магазинах, заказывать какие-то определённые микросхемы из-за рубежа не требуется;
  4. Не создают паразитные радиоволновые токи. Благодаря этому помехи в питающей сети или в конечных потребителях практически не наблюдаются.

Ключевые недостатки обычных блоков питания:

Как работает импульсный блок питания | Часть 1 | Как уменьшить размеры блока питания

  1. Низкий КПД. При передаче электричества трансформаторным способом огромная часть мощности просто теряется. Кроме того, из-за использования стабилизатора на выходе для получения стабильных параметров работы часть КПД дополнительно теряется;
  2. Крупногабаритные. Причём чем мощнее БП – тем больше его вес и размеры. Как следствие, высокомощные и вовсе могут быть маломобильными;
  3. Создают значительное электромагнитное поле. Тем самым они могут образовывать наводки в других линиях передачи сигнала – например, коаксиальных кабелях или «витой паре».

Все эти недостатки оказываются настолько критическими, что сегодня обычные БП в быту практически не используются. Вместо этого применяются импульсные.

Импульсные блоки питания

Импульсные блоки питания

Импульсные блоки питания имеют сложную конструкцию и являются устройствами инверторного типа. Их ключевое отличие от обычных заключается в том, что входное напряжение подаётся сразу на выпрямитель. Затем оно формирует импульсы определённой частоты. За это отвечает отдельная подсистема управления, так что импульсные БП являются полноценными цифровыми устройствами.

Поскольку импульсные БП отличаются конструкционной и принципиальной сложностью, рассматривать схему их работы в рамках этой статьи не целесообразно. и

  1. Ток из сети поступает на сетевой фильтр, минимизирующий входящие и исходящие искажения;
  2. Преобразователь трансформирует синусоиду переменного тока в импульсный постоянный ток;
  3. Инвертор, контролируемый через модуль управления, формирует из импульсного постоянного тока прямоугольные высокочастотные сигналы;
  4. Ток поступает на импульсный трансформатор, который подаёт напряжение на различные элементы самого БП, а также на нагрузку;
  5. После этого ток поступает на выходной выпрямитель, а затем сглаживается на выходном фильтре.

Такая система обеспечивает не только высокий коэффициент полезного действия, но и малые размеры устройства. Причём чем выше частота импульсов – тем компактнее БП за счёт уменьшения габаритов трансформатора.

Еще по теме:  Пульт для телевизора gal lm le008 инструкция

Ключевые достоинства импульсных блоков питания:

  1. Высокий КПД, составляющий, как правило, около 98%. Небольшие потери создаются их-за переходных процессов, возникающих при переключении ключа. Но они слишком незначительны, чтобы брать их в расчёт;
  2. Компактные размеры и малый вес. Это достигается за счёт того, что импульсным БП не требуется массивный трансформатор.

Ключевые недостатки импульсных блоков питания:

  1. Конструкционная сложность. Собрать такое устройство в домашних условиях без знаний в области электроники или электротехники практически невозможно;
  2. Заметный нагрев при работе. Поэтому высокомощные импульсные БП оснащаются дополнительными системами охлаждения, которые приводят к увеличению размера и массы устройства;
  3. Наличие высокочастотных помех. Как следствие, для использования в чувствительной аппаратуре такие блоки питания оснащаются фильтром помех, но и он не даёт 100% защиты от такого «мусорного сигнала»;
  4. Мощность нагрузки должна входить в номинальный диапазон. При превышении или понижении её будут наблюдаться изменения выходного напряжения. Как правило, производители предусматривают это явление и устанавливают защиту от подобных нештатных ситуаций.

Компактные размеры и высокое значение КПД помогли импульсным БП распространиться максимально широко. Сегодня они применяются в зарядных устройствах мобильной электроники, компьютерной и бытовой техники, а также в системах электронного балласта осветительных приборов.

Сравнение импульсного и обычного блоков питания

Сравним эти два типа устройств, определив, какие лучше использовать в той или иной ситуации.

Тип блока питания

Обычный (трансформаторный)

Напряжение сначала понижается, а затем выравнивается

Напряжение сначала преобразуется, а затем понижается

Некоторые высокоточные и чувствительные к ВЧ-помехам устройства

Коэффициент полезного действия

Небольшой, особенно с учётом потерь на стабилизаторе

Как правило, крупные

Как правило, малые

Высокочастотные помехи в выходном токе

Требование максимальной и минимальной мощностей нагрузки

При прочих равных предпочтительнее использовать импульсные БП. Они обеспечивают больший КПД, а ещё весят от нескольких десятков граммов. Но в некоторых высокоточных, прецизионных устройствах лучше применять обычные (трансформаторные) модели, поскольку они не засоряют выходной сигнал помехами.

Источник: expertology.ru

Импульсный блок питания для телевизора

1000 полезных советов

Импульсный Источник Питания (далее ИБП) в телевизорах (да и не только в телевизорах. ) далеко не самый сложный модуль, но как практика показывает именно он чаще всего и является проблемой неисправности.

Ремонт ИБП требует особого внимания и аккуратности в работе!

Во- первых: не следует забывать о том, что ИБП непосредственно связан с сетевым напряжением 220V, поэтому необходимо быть предельно осторожным и соблюдать все правила техники безопасности!

Во- вторых: от источника питания зависит работоспособность остальных узлов аппарата и в случае его неправильной работы ( к примеру ухода в разнос) может привести к их выводу из строя, поэтому ремонт ИБП целесообразно производить отключив его от основных потребителей, используя эквивалентную нагрузку (к примеру лампу накаливания).

Представлена типичная схема блока питания современного ТВ. Для простоты блок питания STAND BY не показан.

Все многообразие неисправностей блоков питания сводится чаще всего к следующим дефектам:

Источник питания телевизора TOSHIBA 285D8D

1. Блок питания не работает, предохранители остаются целыми.

2. При включении телевизора перегорает либо сетевой предохранитель,либо предохранитель в цепи напряжения +305 V (если он есть),

3. Неисправности, проявляющиеся в занижении или завышении вторичных напряжений, причем, если первая из них связана, как правило, с короткими замыканиями в цепи нагрузки одного или нескольких вторичных напряжений, то вторая является следствием обрыва в цепи обратной связи. Обе эти неисправности в современных блоках питания, как правило, приводят к срабатыванию схем блокировки и отключению аппарата.

1. Итак, если блок питания не работает, а все предохранители целы.

Лучше всего начинать поиск неисправностей с проверки напряжения на выходе сетевого выпрямителя. Это напряжение должно составлять около +280 – 305 V, при питающем напряжении сети переменного тока равном 220 В. Кроме того, проверьте с помощью осциллографа амплитуду пульсаций этого напряжения. Если напряжение существенно ниже +305 V или вовсе отсутствует, проверьте выпрямитель сетевого напряжения. Повышенная амплитуда пульсаций указывает на неисправность основного фильтрующего конденсатора С810 (330 mF 400V) либо на обрыв диодного выпрямителя.

Рис.1 Схема электрическая принципиальная импульсного блока питания телевизора TOSHIBA 285D8D.

Если напряжение +305 V находится в пределах нормы (от 280 до 320 В), то можно приступать к тестированию ИБП. Сначала необходимо выяснить, не происходит ли блокировка блока питания сразу после включения, либо он вовсе не пытается запуститься.

Это можно проверить, присоединив вход осциллографа к тому выводу мощного переключающего транзистора, который присоединен к первичной обмотке трансформатора, коллектор транзистора Q802 (2SD 1548). А землю осциллографа присоедините к “горячей земле” блока питания. Теперь включайте главный сетевой выключатель телевизора и смотрите что произойдет. Полученные данные очень помогут в поиске неисправности.

И так, если после включения телевизора здесь появится на короткое время серия импульсов, то это говорит о том, что блок питания пытается запуститься, но сразу после запуска выключается какой-либо схемой блокировки (их может быть несколько). Типичной является ситуация когда, срабатывает защита от превышения предельного значения анодного напряжения на кинескопе.

Еще по теме:  Эквалайзер настройка на бас телевизор

Поскольку эта неисправность непосредственно связана с работой выходного каскада строчной развертки. Однако при ремонте блока питания может возникнуть необходимость убедиться в наличии или в отсутствии срабатывания этой блокировки. Убедиться в этом, а также в том, что является причиной неправильной работы блока питания.

Неисправность в основном потребителе энергии, выходном каскаде строчной развертки, можно следующим способом. Необходимо, во-первых, разорвать цепь подачи питания на первичную обмотку строчного трансформатора. В рассматриваемом примере это цепь +B 115 V И, во-вторых, нагрузить источник вторичного напряжения 115V блока питания резистором 500-750 Ом мощностью 50 Вт (или, что еще удобнее, лампой накаливания 200V 100 Вт). Если при этом блок питания заработает нормально, значит, поиск неисправности следует продолжить в выходном каскаде строчной развертки, а также в схемах блокировки и защиты от недопустимых режимов.

Источник: crast.ru

Импульсный источник питания

Импульсный источник питания – электронная схема, где входное напряжение выпрямляется, фильтруется, нарезается пачками импульсов высокой частоты для передачи через малогабаритный трансформатор. Блок становится управляемым, с гибко подстраиваемыми параметрами. Уменьшается масса самой тяжелой части источника – трансформатора. В англоязычной литературе такие приборы именуются Switching-Mode Power Supply (SMPS).

Прибор SMPS

Прибор SMPS (импульсный источник питания)

Появление импульсных источников питания

Размеры трансформаторов волновали еще Теслу. Ученый повторяя опыт за опытом, установил: высокие частоты тока безопасны для человека, провоцируют большие потери в сердечниках трансформаторов. Результатом споров стало принятие частоты 60 Гц для строительства Ниагарской ГЭС.

Начали с Николы Тесла, потому что это первый человек, который понял, что быстрые колебания механическим способом не получишь. Следовательно, приходится использовать колебательные контуры. Так появился трансформатор Тесла (22 сентября 1896 года), при помощи которого ученый задумал передавать на расстояние сообщения и энергию.

Суть изобретения описана в разделе про катушку Тесла, приведем краткие сведения. Трансформатор образован двумя частями, включенными последовательно. Первичная обмотка первого подключалась к источнику переменного напряжения сравнительно низкой частоты.

Благодаря низкому коэффициенту трансформации происходил заряд конденсатора, подключенного ко вторичной обмотке, до высокого потенциала. Напряжение достигало порога, пробивался разрядник, включенный параллельно конденсатору. Начинался колебательный процесс разряда через первичную обмотку второго трансформатора во внешнюю цепь. Тесла получал напряжения радиодиапазона амплитудой миллионы вольт.

Первые шаг в создании импульсных блоков питания, где напряжение сравнительно низкой частоты преобразуется в импульсы. Аналогичную конструкцию создал в 1910 году Чарльз Кеттеринг, оборудуя системы зажигания автомобилей. Импульсные блоки питания появились в 60-е годы.

Идея минимизации размеров трансформаторов (после Николы Тесла) выдвинута компанией General Electric в 1959 году в лице Джозефа Мерфи и Фрэнсиса Старчеца (U.S. Patent 3,040,271). Идея не сразу нашла горячий отклик (отсутствовала подходящая элементная база), в 1970 году компания Тектроникс выпустила линейку осциллографов с новым источником питания.

Осциллограф

Двумя годами позже инверторы находят применение в электронике (Patent US3697854 A ), главное – появляются первые отечественные модели! Патенты ссылаются друг на друга, невозможно понять, кто первым предложил использовать идею в персональных компьютерах. В СССР разработки начались в 1970 году, связано с появлением в продаже высокочастотного мощного германиевого транзистора 2Т809А.

Как оговаривается в литературе, первым в 1972 году добился успеха москвич, кандидат технических наук Л. Н. Шаров. Позже появился импульсный блок питания 400 Вт авторством А. И. Гинзбурга, С. А. Эраносяна. Вычислительные машины ЕС новинкой оборудованы в 1976 году коллективом под руководством Ж. А. Мкртчяна.

Первые импульсные блоки питания, известные отечественному потребителю по цифровым телевизорам и видеомагнитофонам, часто ломались, современные изделия лишены недостатка – работают непрерывно годами. Момент начала 90-х годов снабжает следующими сведениями:

  1. Удельная мощность: 35 – 120 Вт на кубический дециметр.
  2. Рабочая частота инвертора: 30 – 150 кГц.
  3. КПД: 75 – 85%.
  4. Время наработки на отказ: 50 – 200 тысяч часов (6250 рабочих дней).

Достоинства импульсных блоков питания

Линейные источники питания громоздкие, эффективность хромает. КПД редко превышает 30%. Для импульсных блоков питания средние цифры лежат в диапазоне 70 – 80%, существуют изделия, сильно выбивающиеся из ряда. В лучшую сторону, разумеется. Приводятся сведения: КПД импульсного блока питания достигает 98%. Одновременно снижаются требуемые фильтрации емкости конденсаторов.

Энергия, запасаемая за период, сильно падает с повышением частоты. Зависит прямо пропорционально от ёмкости конденсатора, квадратично от амплитуды напряжения.

Повышение до частоты 20 кГц (в сравнении с 50/60) снижает линейные размеры элементов в 4 раза. Цветочки в сравнении с ожиданиями в радиодиапазоне. Объясняет причину оснащения приемников конденсаторами малого размера.

Устройство импульсных источников питания

Входное напряжение выпрямляется. Процесс осуществляет диодный мост, реже одиночный диод. Затем напряжение нарезается импульсами, здесь литература бодро переходят к описанию трансформатора. Читателей наверняка мучает вопрос – как работает чоппер (устройство, формирующее импульсы). На основе микросхемы, питающейся непосредственно сетевым напряжением 230 вольт.

Еще по теме:  50 телевизор Samsung ue50tu7500uxru 4K ultra hd черный Смарт ТВ tizen os

Реже специально ставится стабилитрон (стабилизатор параллельного типа).

Микросхема формирует импульсы (20 – 200 кГц), сравнительно малой амплитуды, управляющие тиристором или иным полупроводниковым силовым ключом. Тиристор нарезает высокое напряжение импульсами, по гибкой программе, формируемой микросхемой генератора. Поскольку на входе действует высокое напряжения, нужна защита.

Генератор охраняется варистором, сопротивление которого резко падает при превышении порога, замыкая вредный скачок на землю. С силового ключа пачки импульсов поступают на малогабаритный высокочастотный трансформатор. Линейные размеры сравнительно невысоки. Для компьютерного блока питания мощностью 500 Вт умещается детской ладонью.

Полученное напряжения вновь выпрямляется. Используются диоды Шоттки, спасибо низкому падению напряжения перехода металл-полупроводник. Спрямленное напряжение фильтруется, подается потребителям. Благодаря наличию множества вторичных обмоток достаточно просто получаются номиналы различной полярности и амплитуды. Рассказ неполон без упоминания цепи обратной связи.

Выходные напряжения сравниваются с эталоном (например, стабилитрон), происходит подстройка режима генератора импульсов: от частоты, скважности зависит передаваемая мощность (амплитуда). Изделия считаются сравнительно неприхотливыми, могут функционировать в широком диапазоне питающих напряжений.

Прибор с электронной схемой

Корпусной блок питания

Технология носит название инверторной, используется сварщиками, микроволновыми печами, индукционными варочными панелями, адаптерами сотовых телефонов, iPad. Компьютерный блок питания работает подобным образом.

Схемотехника импульсных блоков питания

Природой предоставлено 14 базовых топологий реализации импульсных блоков питания. С присущими достоинствами, уникальными характеристиками. Некоторые подходят созданию маломощных блоков питания (ниже 200 Вт), другие лучшие качества проявляют при питании сетевым напряжением 230 вольт (50/60 Гц). И чтобы выбрать нужную топологию, сумейте представить свойства каждой. Исторически первыми называют три:

  • Buck – бак, олень, доллар.
  • Boost – ускорение.
  • Polarity inverter – инвертор полярности.

Три топологии относятся к линейным регуляторам. Тип приборов считается предшественником импульсных блоков питания, не включая достоинств. Напряжение подается через трансформатор, спрямляется, нарезается на силовом ключе. Работой регулятора заведует обратная связь, в задачи которой входит формирование сигнала ошибки. Тип приборов составлял многомиллиардный оборот в 60-е годы, мог лишь понижать напряжение, а общий провод потребителя замыкался с сетью питания.

Схема Buck топологии

Схема Buck топологии

Buck топология

Так появились «олени». Первоначально предназначенные для постоянного напряжения нарезали входной сигнал импульсами, затем пачки спрямлялись, фильтровались с получением средней мощности. Обратная связь контролировала скважность, частоту (широтно-импульсная модуляция). Аналогичное делается сегодня компьютерными блоками питания.

Практически сразу были достигнуты значения плотности мощности 1 – 4 Вт на кубический дюйм (впоследствии до 50 Вт на кубический дюйм). Прелестно, что стало можно получать множество выходных напряжений, развязанных со входом.

Недостатком сочтем потери в момент переключения транзистора, напряжение меняет полярность, остается ниже нуля до следующего импульса. Указанная часть сигнала, минуя диод, замыкается на землю, не доходя фильтра. Обнаружено существование оптимальных частот переключения, при которых издержки минимизируются. Диапазон 25 – 50 кГц.

Схема Boost топологии

Схема Boost топологии

Boost топология

Топология именуется кольцевым дросселем, ставится вперед ключа. Удается повысить входное напряжение до нужного номинала. Схема работает следующим образом:

  1. В начальный момент времени транзистор открыт, дроссель запасается энергией источника напряжения через коллекторный, эмиттерный p-n-переходы, землю.
  2. Затем ключ запирается, стартует процесс зарядки конденсатора. Дроссель отдает энергию.
  3. В некоторый момент отрабатывает усилитель обратной связи, начинается питание нагрузки. Конденсатор неспособен отдать энергию в сторону силового ключа, мешает диод. Заряд забирает полезная нагрузка.
  4. Падение напряжения вызовет повторное срабатывание цепи обратной связи, начнется накопление энергии дросселем.

Polarity Inverter топология

Топология полярного инвертора похожа на предыдущую схему, дроссель расположен за ключом. Работает следующим образом:

  1. В начальный момент времени ключ открыт, положительной полуволной напряжения наполняет дроссель энергией. Далее энергия пройти бессильна – мешает диод.
  2. Транзистор закрывается, в дросселе возникает ЭДС, называемая паразитной. Направлена противоположно начальной, свободно проходит диод, подзаряжая конденсатор.
  3. Срабатывает схема обратной связи, широтно-импульсный модулятор вновь открывает транзистор. Начинается процесс разрядки конденсатора в нагрузку, дроссель вновь заполняется энергией.

Схема Polarity Inverter топологии

Схема Polarity Inverter топологии

В этом случае наблюдаем параллельность процессов запасания/расходования энергии. Все три рассмотренные схемы демонстрируют следующие недостатки:

  1. Имеется связь по постоянному току между входом и выходом. Другими словами, отсутствует гальваническая развязка.
  2. Невозможно получить несколько номиналов напряжений из одной схемы.

Минусы устраняются двухтактной тяни-толкай (push-pull), запаздывающей (latter) топологиями. Обе используют чоппер с технологией опережения (forward). В первом случае используется дифференциальная пара транзисторов. Становится возможным использовать один ключ на половину периода.

Для управления нужна специальная формирующая схема, попеременно раскачивающая эти качели, улучшаются условия отвода тепла. Нарезанное напряжение двухполярное, питает первичную обмотку трансформатора, вторичных много – сообразно требованиям потребителей.

В запаздывающей топологии один транзистор заменен диодом. Схема часто эксплуатируется маломощными блоками питания (до 200 Вт) с постоянным напряжением на выходе 60 – 200 В.

Похожие статьи

  • Как выбрать источник бесперебойного питания
  • Источник тока
  • Диодный мост
  • Почему не включается телевизор

Источник: vashtehnik.ru

Оцените статью
Добавить комментарий