В последнее время среди мобильных производителей все популярнее становятся OLED-дисплеи. В чем состоят его преимущества и недостатки по сравнению с LCD?
Сейчас мобильные устройства поставляются с различными видами дисплеев: LCD, OLED, AMOLED. Каждый мобильный производитель расхваливает достоинства используемого экрана, а некоторые даже совершенствуют экранные технологии и разрабатывают собственные варианты, например, Super AMOLED у Samsung или Optic AMOLED у OnePlus.
Прежде чем покупать очередной «смартфон с самым лучшим дисплеем», нужно разобраться, какую пользу вы извлечете из него как пользователь.
Что такое OLED?
Аббревиатура OLED расшифровывается как Organic Light Emitting Diode, то есть органический светоизлучающий диод, или просто органический светодиод. Для их создания используются тонкие пленки, состоящие из нескольких слоев углеродного материала.
Oled ТВ Брать или нет? Отзыв владельца!
Как можно судить из названия, эти диоды излучают свет при прохождении через них электрического тока. В этом и заключается одно из главных отличий таких дисплеев от жидкокристаллических экранов — они не нуждаются в дополнительной подсветке.
Способность органических материалов светиться под воздействие электрического тока была обнаружена еще в 1950-х годах. Но технология стала стремительно развиваться и применяться в различных областях только в последние годы.
Принцип работы
Светодиодная панель состоит из шести слоев. В верхней и нижней части расположены слои защитного стекла или пластика. Причем верхний слой называется изолирующим, а нижний — подложкой. Так как органические светодиоды очень чувствительны к кислороду и влаге, они играют важную роль.
Между этими слоями находятся катод (отрицательный электрод) и анод (положительный электрод). А между ними уже помещаются два слоя из органических молекул, которые называются излучающим (рядом с катодом, в нем образуется свечение) и проводящим (рядом с анодом).
Чтобы заставить светодиоды излучать свет, проводится напряжение через анод и катод.
По мере поступления электричества катод получает электроны от источника питания, а анод их теряет или, другими словами, получает дырки.
В результате электроны делают излучающий слой отрицательно заряженным, а проводящий слой становится положительно заряженным.
Положительные дырки гораздо более подвижны, чем отрицательные электроны, поэтому они перескакивают через границу проводящего слоя к излучающему. Когда дырка встречается электроном, они компенсируют друг друга, и высвобождается короткий выброс энергии в виде частицы света — фотона.
Этот процесс называется рекомбинацией. Так как он происходит множество раз в секунду, светодиод производит непрерывный свет, пока ток не перестает течь. За счет использования множества диодов красного, зеленого и синего цвета получаются сложные цветные изображения высокого разрешения.
Типы OLED
Существует два типа светодиодов. В традиционном варианте применяются небольшие органические молекулы, помещенные на стекло, чтобы производить свет. Другой тип использует крупные молекулы полимеров. Они называются светоизлучающими полимерами (LEP) или полимерными светодиодами (PLED), а также отличаются меньшей толщиной и гибкостью.
Дисплеи OLED могут быть построены различными способами. В некоторых конструкциях свет выходит через верхний изолирующий слой, в других — через подложку. Панели большого размера также отличаются тем, что пиксели формируются из отдельных элементов светодиодов.
Также может различаться расположение красных, синих и зеленых пикселей: они могут находиться рядом друг с другом или друг над другом. В последнем случае в каждом квадратном сантиметре умещается больше пикселей, что обеспечивает более высокое разрешение, но и дисплей получается толще.
Преимущества OLED
Дисплеи OLED во многих моментах превосходят жидкокристаллические экраны.
- Небольшая толщина (около 0,2-0,3 мм, как правило, LCD примерно в 10 раз толще).
- Маленький вес.
- Гибкость.
- Высокая яркость.
- Меньшее потребление энергии (так как подсветка не требуется).
- Высокая скорость обновления (OLED реагирует в 200 раз быстрее, что имеет большое значение при воспроизведении быстро движущихся изображений, например, при просмотре спортивных передач или игр).
- Более натуральные цвета и насыщенный черный цвет (за счет отсутствия подсветки черных пикселей).
- Широкий угол обзора.
Недостатки OLED
Самым главным недостатков дисплеев OLED является их недолговечность. Ранние версии таких экранов изнашивались примерно в четыре раза быстрее по сравнению с LCD. С развитием современных технологий производителям удалось уменьшить эту разницу, и теперь дисплеи на основе органических светодиодов могут выдержать несколько лет активного использования.
Кроме того, как показывает практика, красные и зеленые диоды работают дольше, чем их синие собратья. Со временем это может привести к искажению цветов.
Еще одна проблема заключается в чувствительности к воде. Как уже отмечалось выше, по этой причине здесь большую роль играет изолирующий слой.
Также стоит отметить, что производство OLED-дисплеев все еще обходится дороже, чем LCD. В результате потребителю придется платить больше за устройство со светодиодной панелью, чем за его аналог с жидкокристаллическим экраном. В случае повреждения дисплея ремонт также может обойтись дороже.
Применение
Технология еще является относительно новой, хотя все больше производителей стремятся использовать ее в собственной продукции. Сейчас OLED-дисплеи применяются в экранах телевизоров, компьютеров, плееров, умных часов и смартфонов.
Источник: androidlime.ru
Технология будущего — светодиодные экраны на органических светодиодах
OLED (organic light emitting diode) — полупроводниковый прибор на основе органических кристаллов, которые излучают свет при пропускании через них электрического тока.
OLED представляют собой тончайшую слоистую органическую структуру на основе углерода.
Эмиссионный слой, находящийся между катодом, который отдает электроны в эмиссионный слой, и анодом, который забирает из него электроны. Эмиссионный слой заряжается отрицательно, проводящий — положительно. Электростатические силы заставляют электроны двигаться навстречу дыркам. При столкновении (происходит вблизи эмиссионного слоя) начинается процесс рекомбинации с эмиссией фотонов (излучением).
Органические светодиоды, подобно неорганическим, излучают волны видимого спектра. В приборах, работающих на OLED технологии, используются множество таких слоев.
В отличие от большинства диодов, органическим полупроводниковым диодам не нужна подсветка, многочисленные преобразователи и фильтры. Они сами излучают свет.
История возникновения и развития
Первые упоминания о наблюдении люминесценции в полупроводниковых органических структурах датируется 1950-ми годами. Ставил опыты А. Бернаноз. Следующие опыты была сделаны в 1960,1963, 1974, 1977 годах, однако открытия не представляли коммерческой ценности.
Первый работающий органический светодиод был создан в 1989 году учеными Ч. Тангом и С. Слайком.
Первые монохромные экраны стали выпускать в 1998 году, а в 2000 году за открытие в области проводящих органических кристаллов была присуждена Нобелевская премия ученым А. Хигеру, А. Макдиармиду, Х. Сиракава.
В 2010 стали выпускать телефоны с OLED дисплеями. В 2013 LG начала продажи телевизоров на основе органических кристаллов. Сейчас ученые работают над созданием не просто тонких и гибких экранов на основе OLED технологии, а легких, прозрачных экранов, тонких как лист бумаги, которые можно сворачивать в трубочку.
Плюсы и минусы OLED дисплеев
Преимущества
Органические светодиоды — уникальная технология, позволяющая создавать интересные устройства, которые не могут быть реализованы при помощи иных существующих разработок:
- возможность контроля излучения каждого пикселя;
- высокая четкость и контрастность изображения (заявленный коэффициент контрастности черного в OLED-экранах Sony нового поколения имеет рекордное значение 1 000 000:1);
- малое энергопотребление;
- угол обзора стремится к 180 градусам;
- малая толщина (OLED дисплей тоньше экранов гибких светодиодных экранов, и является самым тонким на сегодняшний день);
- малый вес;
- высокая яркость (непосредственно органические полупроводниковые кристаллы способны излучать до 100 000 Кд/кв.м., т.е. регулируя подаваемый ток, можно получить нужную яркость дисплея);
- сверхмалый пиксель;
- высокое разрешение;
- не требуют подсветки;
- отсутствие эффекта «шлейфа» в динамических кадрах;
- малое время отклика;
- простое устройство;
- возможность создание гибких экранов;
- возможность производства экранов с прозрачностью до 85% (прозрачные анод и катод на прозрачной подложке) — TOLED-технология;
- возможность двухстороннего воспроизведения контента (используется 1 экран с двумя рабочими поверхностями, а не 2 разных), можно транслировать одинаковый или разный контент на каждой стороне;
- сверхтонкий дизайн;
- экологичность;
- безопасность;
- новейшие технологии позволяют печатать матрицу подложке посредством специального устройства;
- технология напоминает печать струйного принтера. Машина наносит матрицу из органических кристаллов, что позволяет получить плотность пикселя большую, чем Full HD.
Недостатки
К недостаткам дисплеев на органических светодиодах можно отнести следующее:
- заявленный срок жизни органических светодиодов 50 000–65 000 часов (качественные LED могут пережить 150 000 часовой рубеж);
- возможность выгорания кристаллов с течением времени;
- изображение на OLED становится практически невидимым под яркими лучами солнца, однако проблему удалось решить Samsung (Super AMOLED на матрице IPS);
- высокая стоимость.
Технология OLED
Выпускают дисплеи AMOLED и PMOLED.
AMOLED — дисплеи с активной матрицей. Характерной особенностью является прямое управление каждым пикселем, что позволяет быстро воспроизводить контент. Такое устройство пригодно для больших дисплеев с высоким разрешением. Минусом AMOLED является необходимость использования сложной управляющей схемы, которая обуславливает высокую стоимость устройств.
PMOLED — дисплеи с пассивной матрицей. Это значит, что экран оснащается контроллерами развертки изображения по столбцам и строкам и для эмиссии каждого пикселя должны быть включены строка и столбец, на пересечении которых расположен пиксель. Для включения всего дисплея сигналы должны быть поданы на все «узлы». При этом, один за другим перебираются все строки и столбцы. Это приводит к задержке сигнала и невозможности создания экранов большого размера.
В настоящее время PMOLED используют преимущественно в мобильных телефонах.
Область применения
OLED экраны — перспективное технология. В настоящее время они применяются в мобильных телефонах, цифровых видеокамерах, домашних телевизорах, но самое интересное применение — в рекламных, дизайнерских и учебных целях:
- Рекламные конструкции. Высокая прозрачность и малая толщина делают прозрачные OLED-экраны идеальным материалом для изготовления рекламных витрин магазинов и кафе внутри ТЦ.
- Интересное дизайнерское решение — использование сенсорных прозрачных дисплеев в интерьере магазинов, ресторанов, научных и образовательных центров.
- Еще одна уникальная разработка — зеркало с сенсорным прозрачным OLED-дисплеем. Такое устройство можно устанавливать магазинах. Оно позволит покупателям не просто созерцать свое отражение, а экономить время, виртуально примеряя одежду. Достаточно выбрать модель на экране и покупатель увидит свое отражение в данном наряде. Если сенсорное зеркало подключено к Wi-Fi, можно попутно узнавать любую интересующую информацию.
- Зеркала с сенсорными OLED дисплеями и гибкие экраны можно использовать для декора гостиниц, ТЦ, кафе, клубов, бизнес-центров.
- Гибкие OLED-дисплеи позволяют создать уникальные учебные и выставочные пособия: интерактивные карты Земли и Звездного Неба, инсталляции и многое другое.
Технические характеристики
OLED-экраны имеют следующие характеристики:
- малая толщина от 3,65 мм до 10 мм;
- угол обзора 178 градусов;
- разрешение от 1920х1080 до 3840х2160 (Ultra HD);
- возможность масштабирования контента Full HD до Ultra HD;
- яркость от 300 кд/кв.м;
- компенсация задержки изображения на стыках;
- прозрачность от 0 до 85%;
- возможность приобретения двухстороннего экрана;
- возможность выбора экрана с антибликовым покрытием;
- рабочий температурный диапазон от -40 С до + 105 С (многие модели работают от 0 С до +40 С);
- энергопотребление 375 Вт;
- время жизни светодиодов от 50 000 часов.
Основное достоинство медиафасадов заключается в их масштабности и большом размере.
Что необходимо проверить при доставке светодиодного экрана и что делать в случае обнаружения повреждений? Читайте об этом здесь.
Сколько можно заработать на сдачу светодиодного экрана в аренду? Узнайте об этом, прочитав нашу статью.
Стоимость OLED дисплея
Самыми лучшими производителями OLED дисплеев на сегодняшний день являются LG, Samsung, Sony.
Стоимость качественных дисплеев на органических светодиодах составляет от 165 000 руб/кв.м.
This entry was posted in Полезная информация. Bookmark the permalink.
5 thoughts on “ Технология будущего — светодиодные экраны на органических светодиодах ”
- Pingback: Цена уличных LED-экранов — от чего она зависит
- Pingback: Что входит в обслуживание светодиодных экранов для помещений?
- Pingback: Устройство и принцип работы светодиодного экрана
Люблю когда делают подобное оформление заведений. Хотим в нашем магазине установить светодиодную колонну. Цена конечно кусается, но я считаю что идти в ногу со временем необходимо чтобы бизнес развивался и приносил всё больше дохода.
Источник: svetodiodnyiekran.ru
Технология OLED
Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду.
Таким образом катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой положительный. Под действием электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют.
Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона которое сопровождается выделением (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным. Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит.
В качестве материала анода обычно используется оксид индия легированный оловом. Он прозрачный для видимого света и имеет высокую работу выхода, которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют металлы, такие как алюминий и кальций, так как они обладают низкой работой выхода, способствующей инжекции электронов в полимерный слой.
Классификация по способу управления
Существуют два вида OLED-дисплеев — PMOLED и AMOLED. Разница заключается в способе управления матрицей — это может быть либо пассивной матрицей (PM) или активной матрицей (AM).
В PMOLED-дисплеях используются контроллеры развертки изображения на строки и столбцы. Чтобы зажечь пиксель, необходимо включить соответствующую строку и столбец: на пересечении строки и столбца пиксель будет излучать свет. За один такт можно заставить светиться только один пиксель. Поэтому чтобы заставить светиться весь дисплей, необходимо очень быстро подать сигналы на все пиксели путем перебора всех строк и столбцов. Как это делается в старых ЭЛТ (электроно-лучевых трубках).
Дисплеи на базе PMOLED получаются дешевыми, но из-за необходимости строчной развертки изображения не возможно получить дисплеи больших размеров с приемлемым качеством изображения. Обычно размеры PMOLED-дисплеев не превышают 3″ (7,5 см)
В AMOLED-дисплеях каждый пиксель управляется напрямую, поэтому они могут быстро воспроизводить изображение. Размеры AMOLED-дисплеев могут иметь большие размеры и на сегодня уже созданы дисплеи с размером 40″ (100 см). Производство AMOLED-дисплеев дорогое из-за сложной схемы управления пикселями, в отличие от PMOLED-дисплеев, где для управления достаточно простого контроллера.
Классификация по светоизлучающему материалу
В настоящее время в основном развиваются две технологии, показавшие наибольшую эффективность. Различаются они используемыми органическими материалами это микромолекулы (sm-OLED) и полимеры (PLED), последние делятся на просто полимеры, полимерорганические соединения (POLED), и фосфоресцирующие(PHOLED). О последних немного по подробнее.
PHOLED используют принцип электрофосфоресценции, чтобы преобразовать до 100 % электрической энергии в свет. К примеру, традиционные флуоресцентные OLED преобразовывают в свет приблизительно 25-30 % электрической энергии. Из-за их чрезвычайно высокого уровня эффективности энергии, даже по сравнению с другим OLED, PHOLED изучаются для потенциального использования в больших дисплеях типа телевизионных мониторов или экранов для потребностей освещения. Интересно, что технология OLED способна значительно повысить качество LCD панелей, поскольку перспективной технологией подсветки для них является технология PHOLED (PHosphorescent Organic Light Emitting Diode). По данным компании Universal Display Corporation применение PHOLED диодов увеличивает яркость панелей в четыре раза.
Схемы цветных OLED дисплеев
Первыми появились OLED дисплеи на основе микромолекул, однако они оказались слишком дорогостоящими, поскольку изготавливались с помощью вакуумного напыления.
Первый шаг к созданию полимерных дисплеев был сделан в 1989 году, когда ученым Кембриджского университета удалось синтезировать особый полимер – полифениленвинилен. Дисплеи этого типа могут быть получены путем нанесения полимерных материалов на основу специальным струйным принтером. Иногда такие дисплеи называют LEP (Light-Emitting Polymer). Основа может быть гибкой с радиусом изгиба 1 см и менее.
Однако на сегодняшний день по сроку службы и эффективности приборы на основе микромолекул опережают приборы LEP. Сравнительные характеристики долговечности и эффективности излучения для двух технологий OLED дисплеев приведены ниже.
Существуют три схемы цветных OLED дисплеев:
* схема с раздельными цветными эмиттерами;
* схема WOLOD+CF (белые эмиттеры + цветные фильтры);
* схема с конверсией коротковолнового излучения.
Самый простой и привычный вариант – обычная трехцветная модель, которая в технологии OLED называется моделью с раздельными эмиттерами. Три органических материала излучают свет базовых цветов – R, G и B. Этот вариант самый эффективный с позиции использования энергии, однако, на практике оказалось довольно сложно подобрать материалы, которые будут излучать свет с нужной длиной волны, да еще с одинаковой яркостью.
Второй вариант реализуется гораздо проще. Он использует три одинаковых белых эмиттера, которые излучают через цветные фильтры, однако он значительно проигрывает по эффективности использования энергии первому варианту, поскольку значительная часть излученного света теряется в фильтрах.
В третьем варианте (CCM – Color Changing Media) применяются голубые эмиттеры и специально подобранные люминесцентные материалы для преобразования коротковолнового голубого излучения в более длинноволновые – красный и зеленый. Голубой эмиттер, естественно, излучает «напрямую». У каждого из вариантов есть свои достоинства и недостатки:
Другие виды OLED дисплеев
TOLED — прозрачные светоизлучающие устройства TOLED (Transparent and Top-emitting OLED) — технология, позволяющая создавать прозрачные (Transparent) дисплеи, а также достигнуть более высокого уровня контрастности.
Прозрачные TOLED-дисплеи: направление излучения света может быть только вверх, только вниз или в оба направления (прозрачный). TOLED может существенно улучшить контраст, что улучшает читабельность дисплея при ярком солнечном свете.
Так как TOLED на 70 % прозрачны при выключении, то их можно крепить прямо на лобовое стекло автомобиля, на витрины магазинов или для установки в шлеме виртуальной реальности… Также прозрачность TOLED позволяет использовать их с металлом, фольгой, кремниевым кристаллом и другими непрозрачными подложками для дисплеев с отображением вперед (могут использоваться в будущих динамических кредитных картах). Прозрачность экрана достигается при использовании прозрачных органических элементов и материалов для изготовления электродов.
За счёт использования поглотителя с низким коэффициентом отражения для подложки TOLED-дисплея контрастное отношение может на порядок превзойти ЖКИ (мобильные телефоны и кабины военных самолетов-истребителей). По технологии TOLED также можно изготавливать многослойные устройства(например SOLED) и гибридные матрицы (Двунаправленные TOLED TOLED делает возможным удвоить отображаемую область при том же размере экрана — для устройств, у которых желаемый объём выводимой информации шире, чем существующий).
FOLED (Flexible OLED) — главная особенность — гибкость OLED-дисплея (Демонстрация гибкого OLED-дисплея от SONY). Используется пластик или гибкая металлическая пластина в качестве подложки с одной стороны, и OLED-ячеек и герметичной тонкой защитной пленки — с другой. Преимущества FOLED: ультратонкость дисплея, сверхнизкий вес, прочность, долговечность и гибкость, которая позволяет применять OLED-панели в самых неожиданных местах. (Раздолье для фантазии — область возможного применения OLED весьма велика).
Staked OLED — принципиально новое решение от UDC – Staked OLED, сложенные OLED-устройства. Основной особенностью новой технологии является размещение R-ячеек (G-, B-) в вертикальной (последовательно), а не в горизонтальной (параллельно) плоскости, как это происходит в ЖКИ-дисплее или электронно-лучевой трубке. В SOLED каждым элементом подпиксела можно управлять независимо.
Цвет пиксела может быть отрегулирован при изменении тока, проходящего через три цветных элемента (в нецветных дисплеях используется модуляция ширины импульса). Яркостью управляют, меняя силу тока. Преимущества SOLED: высокая плотность заполнения дисплея органическими ячейками, посредством чего достигается хорошее разрешение, а значит, высококачественная картинка.(В SOLED-дисплеях в 3 раза улучшено качество изображения в сравнении с ЖКИ и ЭЛТ).
Преимущества в сравнении c LCD-дисплеями
* меньшие габариты и вес
* отсутствие необходимости в подсветке
* отсутствие такого параметра как угол обзора — изображение видно без потери качества с любого угла
* мгновенный отклик (на порядок ниже, чем у LCD) — по сути полное отсутствие инерционности
* более качественная цветопередача (высокий контраст)
* более низкое энергопотребление при той же яркости
* возможность создания гибких экранов
Яркость. OLED дисплеи обеспечивают яркость излучения от нескольких кд/м2 (для ночной работы) до очень высоких яркостей — свыше 100 000 кд/м2, причем их яркость может регулироваться в очень широком динамическом диапазоне. Так как срок службы дисплея обратно пропорционален его яркости, для приборов рекомендуется работа при более умеренных уровнях яркости до 1000 кд/м2. При освещении LCD-дисплея ярким лучом света появляются блики, а картинка на OLED-экране останется яркой и насыщенной при любом уровне освещенности (даже при прямом попадании солнечных лучей на дисплей).
Контрастность. Здесь OLED также лидер. OLED-дисплеи обладают контрастностью 1000000:1 (Контрастность LCD 1300:1[источник не указан 71 день], CRT 2000:1)
Углы обзора. Технология OLED позволяет смотреть на дисплей с любой стороны и под любым углом, причем без потери качества изображения.
Энергопотребление. Энергопотребление OLED дисплеев в полтора раза ниже, чем LCD. Энергопотребление PHOLED(англ.) ещё ниже.
Потребность в преимуществах, демонстрируемых органическими дисплеями с каждым годом растёт. Этот факт позволяет заключить, что в скором времени человечество увидит расцвет данной технологии.
Но технология не стоит на месте и впереди новое поколение OLED
Светодиоды на основе квантовых точек. Сразу отметим, что сильными сторонами QDLED-устройств (Quantum Dot LED — светодиод на квантовых точках) являются высокая яркость, невысокая стоимость производства, широкий диапазон цветов. Уже почти сразу после изобретения нового типа светодиодов им предрекают отличные перспективы стать основой для дисплеев мобильных аппаратов («наладонников», мобильных телефонов и пр.), и даже крупноформатных телевизионных панелей.
Под квантовой точкой ученые подразумевают особую полупроводниковую структуру, которая ограничивает движение электронов сразу в трех измерениях. Применительно к светодиодам на квантовых точках использовалась следующая вариация: селенид кадмия образует «ядро», а в качестве ограничивающей «оболочки» выступает сульфид цинка.
Главными «действующими лицами» в данном случае являются электроны, которые при переходе с высокого энергетического состояния на более низкое испускают фотоны, за счет чего и образуется свечение точки. Довольно прост и механизм изменения цвета свечения светодиода — необходимо лишь изменить размеры квантовой точки, что приводит к изменению и длины волны света. Таким образом, рассчитав необходимые размеры полупроводниковой структуры возможно создать светодиоды красного, оранжевого, желтого, или зеленого цветов. Еще одним преимуществом устройств высочайшая яркость — до 9000 Кд/кв. м. К примеру, яркость современных дисплеев не превышает значения в 500 Кд/кв. м. То есть разработка позволяет повысить соответствующий параметр на порядок. Более того, технология позволяет легко повысить яркость светодиодов — всего лишь формированием нескольких квантовых точек.
В конце выкладываю видео для сравнения свойств TFT и OLED дисплеев.
Источник: habr.com