Прогрессивная и чересстрочная развертки — это методы формирования изображения на экране телевизоров и других аналоговых средств отображения информации. За одну секунду на экране телевизора «пробегает» 30 кадров (в США и Японии, в Европе этот показатель составляет 25 кадров в секунду), метод формирования каждого и которых определяет прогрессивная или чересстрочная развёртки.
В обычных телевизорах используется чересстрочная развёртка. Это означает, что каждый из 30 кадров в секунду прорисовывается за два прохода, сначала прорисовываются чётные линии изображения, затем нечётные. Для передачи чересстрочного сигнала, требуется меньший диапазон частот, так как каждый закодированный кадр виртуально разбит на две части, однако качество такого изображения хуже, чем при прогрессивной развёртке. При формировании изображения в прогрессивной развёртке, кадр прорисовывается полностью за один проход, что требует большего диапазона частот передаваемого изображения, и формирует более качественное изображение. Проекторы, компьютерные мониторы и большинство современных DVD плееров обычно работают с прогрессивной развёрткой.
Телевизор Samsung не включается ремонт строчной развертки
Чересстрочная развертка.
На данном рисунке показан принцип реконструкции оригинального киноизображения (24 кадра в секунду) по методу 3/2. (3-2 pulldown)
(Актуально только для системы NTSC, в системе PAL подобная реконструкция не требуется. PAL работает на основе 25 полей в секунду, что сопоставимо с оригинальным кино-стандартом 24 кадра в секунду. Но вследствие того, что в системе PAL за одну секунду формируется 25 «кадров», один и тот же фильм будет в среднем на 5 минут короче, чем в кинотеатре или при просмотре в системе NTSC. Данный аспект незаметен для большинства людей.)
Источник: dzen.ru
1.2. Развертка
Как уже говорилось – разверткой называется процесс последовательной, поочередной передачи элементов изображения. При выборе типа развертки для ТВ системы необходимо обеспечить одинаковое время передачи каждого элемента, минимальные потери на обратный ход и простоту технической реализации. Всем этим требованиям наиболее полно отвечает линейная развертка.
Поэтому в вещательном ТВ и большем числе прикладных систем используют линейные развертки: чересстрочную и прогрессивную (построчную). В ТВ используются 2 развертки: горизонтальная – строчная и вертикальная – кадровая, причем, за направление движения развертывающего элемента (обычно электронного луча) принято движение слева направо для строчной развертки (СР) и сверху вниз для кадровой (КР), причем, изображение на экране телевизора можно получить только при совместной работе строчной и кадровой разверток.
При работе развертки различают ее прямой и обратный ход. Во время прямого хода происходит снятие или отображение видеоинформации (активная часть), при этом луч движется слева направо для СР и сверху вниз, а при обратном ходе (пассивная часть) возвращается назад, как показано на рис.1.8.
Как работает строчная развертка
После каждой строки и каждого кадра во время обратного хода передаются специальные синхронизирующие импульсы, определяющие привязку к началу координат разверток по строкам и кадрам, передающего и приемного устройств. Точность синхронизации и постоянство скоростей развертки по строке и кадру определяют точность воспроизведения геометрического соответствия деталей изображения на приеме и передаче (рис.
1.9). Рис.1.8. Линейно-строчная развертка Рис.1.9. Синхронизация разверток передающей и приемной стороны 1.3.
ОБОБЩЕННАЯ СТРУКТУРНАЯ СХЕМА ТЕЛЕВИДЕНИЯ Общая задача ТВ – преобразование световой энергии в электрический сигнал, передача его по каналу связи и обратное преобразование на приемном конце электрического сигнала в оптическое изображение. Решение этой задачи обуславливает построение ТВ системы, т.е. комплекс технических средств, обеспечивающих получение зрительной информации о передаваемом объекте на приемном конце.
В зависимости от назначения системы, объем и устройство технических средств могут быть различными, но они характеризуются общими свойствами. Обобщенная структурная схема ТВ системы, представленная на рис.1.10, состоит из следующих функциональных блоков: О – объектив; ОЭП – оптико-электронный преобразователь (передающая трубка); РУ – развертывающее устройство; СГ – синхрогенератор; УС – усилитель; ПРД – передающее устройство; КС – канал связи; ПР – приемное устройство; ВУ – видеоусилитель; ЭОП – электронно-оптический преобразователь (кинескоп); АСС – амплитудный селектор синхроимпульсов.
Рис.1.10. Обобщенная структурная схема ТВ системы Рассмотрим работу ТВ системы по обобщенной структурной схеме, представленной на рис.1.10. Объектив преобразует световой поток, создавая оптическое изображение сцены на светочувствительной поверхности оптико-электронного преобразователя (передающей трубки или ПЗС-матрицы).
В преобразователе происходит преобразование светового потока в электрический сигнал, за счет явления фотоэффекта и считывания электрических зарядов с помощью развертывающего устройства. Электрические импульсы, несущие информацию об изображении, называются исходным яркостным сигналом.
Для синхронной и синфазной работы анализирующего и синтезирующего устройств, обеспечивающих идентичность положения координат точек на передающем и приемном устройствах, необходимо генерировать и передавать специальные сигналы синхронизации. Синхронность достигается при равенстве частот разверток этих устройств, а синфазность – при точном начале их работы.
Для выполнения этих условий в ТВ используется принудительная синхронизация: сигналы синхронизации с периодом строк – строчные, и с периодом кадров – кадровые, вырабатываются в синхрогенераторе, поступают в развертывающее устройство на передающей стороне, управляя его работой, и в усилитель (УС), где суммируются с сигналом яркости, и вместе поступают на передающее устройство. Синхрогенератор вырабатывает также сигналы гашения обратного хода электронных лучей, обеспечивающие запирание передающей и приемной трубок на это время.
Исходный сигнал яркости вместе с введенным сигналом гашения называется сигналом яркости, а сигнал, состоящий из сигнала яркости и сигнала синхронизации, называется полным ТВ сигналом (ПТВС). В передающем устройстве производится модуляция несущей, и этот сигнал поступает в канал связи, роль которого могут выполнять радиоканалы, радиорелейные, спутниковые, кабельные и другие линии связи, удовлетворяющие требованиям неискаженной передачи ТВ сигнала.
В приемном устройстве происходит усиление ТВ сигнала по высокой и промежуточной частотам, а также его детектирование. Полученный видеосигнал поступает на видеоусилитель, где достигает уровня, необходимого для управления преобразователем сигнал-свет (кинескоп) и селектор импульсов синхронизации.
В селекторе происходит выделение импульсов синхронизации из ПТВС, которые управляют развертывающим устройством на приемной стороне, обеспечивая синхронность и синфазность движения сканирующих элементов анализирующего и синтезирующего устройств. Лекция – 2. ОСНОВЫ ЗРИТЕЛЬНОГО ВОСПРИЯТИЯ 2.1. Зрительная система человека 2.2.
Основные светотехнические величины и их параметры 2.3. Характеристики оптических изображений и их параметры 2.1. ЗРИТЕЛЬНАЯ СИСТЕМА ЧЕЛОВЕКА Человек получает зрительную информацию с помощью зрительной системы, состоящей из глаза, нервной системы и зрительного центра коры головного мозга. Глаз имеет приблизительно шарообразную форму с диаметром около 2,5 см.
Внешняя прочная оболочка — склера – защищает от внешних повреждений. На передней части глаза склера прозрачна – роговица – и за ней располагается хрусталик, представляющий собой прозрачное упругое тело в форме двояковыпуклой линзы.
Спереди хрусталик прикрыт радужной оболочкой – передняя часть сосудистой оболочки, которая является диафрагмой, имеющей в середине отверстие – зрачок. Диаметр зрачка может непроизвольно (без участия сознания человека) меняться. Таким образом происходит адаптация – автоматическое регулирование количества света, поступающего внутрь глаза, для защиты от световых перегрузок.
Между роговицей и радужной оболочкой находится полость — передняя камера, заполненная прозрачной жидкостью- камерной влагой. Вся полость глаза за хрусталиком заполнена прозрачной студенистой массой, называемой стекловидным телом. Таким образом, оптическая система глаза состоит из роговицы, камерной влаги, хрусталика и стекловидного тела.
С ее помощью изображение объекта проецируется на внутреннюю оболочку глаза – сетчатку, представляющую собой скопление множества мельчайших светочувствительных элементов — фоторецепторов – колбочек и палочек. Колбочки – рецепторы дневного зрения, имеют низкую световую чувствительность, но большой разрешающей способностью и цветовой чувствительность.
Наиболее густо они располагаются в центральной области сетчатки, называемой желтым пятном – области наилучшего зрения. Здесь расположена центральная впадина, обладающая способностью различать мелкие детали изображения. Палочки – рецепторы сумеречного зрения имеют высокую световую чувствительность, но низкую разрешающую способность и чувствительность к цвету.
Кривизна поверхности хрусталика может меняться под действием охватывающей его мышцы, за счет чего осуществляется аккомодация –автоматическая фокусировка на сетчатке изображения тех предметов, которые мы хотим рассмотреть. В желтом пятне преобладают колбочки. Плотность колбочек убывает с удалением от центра сетчатки, а плотность палочек почти постоянна.
Фоторецепторы через сложную нервную систему – зрительный нерв – связаны с корой головного мозга. При построении ТВ систем необходимо наиболее полно приблизить получаемое изображение с тем, что воспроизводит глаз, т.е. согласовать ее параметры со свойствами зрительной системы.
Предельная способность глаза различать мелкие детали изображения определяется разрешающей способностью – остротой зрения. Она определяется наименьшим угловым расстоянием d между двумя светящимися точками, при котором наблюдатель видит эти точки раздельно. Минимально разрешаемое расстояние сильно зависит от яркости наблюдаемых объектов и их контраста относительно фона.
Из-за неоднородности структуры сетчатки по мере удаления от центральной впадины острота зрения падает. Основная зрительная информация сосредоточена в пространственном угле ясного зрения, который составляет примерно 16х120, а разрешающая способность глаза ≈ 1 минуте. Видимая част спектра электромагнитных колебаний – 380-760 нм.
Спектральная характеристика чувствительности глаза, представленная на рис.2.1, имеет максимум на волне желто-зеленого цвета равной 550 нм. Рис. 2.1. График спектральной чувствительности глаза
Ограничение
Для продолжения скачивания необходимо пройти капчу:
Источник: studfile.net
Прогрессивная развёртка: что это такое в телевизоре
При покупке нового современного телевизора часто возникает проблема в выборе новой модели. Просматривая характеристики цифровой техники нередко в перечне можно встретить понятие прогрессивная развёртка. Она имеет разные стандарты. Возникает вопрос, что это такое и какой вариант лучше всего выбирать?
Прогрессивная развёртка или прогрессивное сканирование: что это такое в ТВ
Что это такое прогрессивная развёртка в телевизоре? Прогрессивная развёртка — это специальная цифровая система формирования изображения, которая выводится на экран телевизора. Изображение передаётся формированием строк одной за одной, за счёт чего улучшается качество передаваемого изображения.
Такой тип передачи картинки отличается от классической системы interlace. Кроме того, прогрессивное сканирование способно передавать до 50 кадров в одну секунду. Таким образом, прогрессивная развёртка обеспечивает передачу высококачественного изображения. За счёт чего удаётся избежать эффекта гребёнки.
Прогрессивное сканирование уже давно завоевала большую популярность на рынке телекоммуникаций и широко используется при производстве разных моделей телевизоров.
Для чего она требуется в ТВ
Выделяют два вида сканирования — чересстрочная и прогрессивная. При первом варианте картинка появляется на ТВ двумя «полукадрами». Вначале отображаются нечётные ряды, после них чётные. Такой вид системы присутствовал в старых вариантах телевизоров. Изображение было чёткое, одна не настолько насыщенное.
Чересстрочная система указывается в характеристиках с индексом «i».
Система прогрессивного сканирования выводит на экран кадр целиком. Все линии идут последовательно. Это помогает передать чёткое, объёмное и реалистическое изображение. При просмотре телеканалов глаза не напрягаются, нет дискомфорта и усталости.
От качества передаваемого эпизода зависит число передаваемых моментов в секунду. Иногда показатели обозначаются в Герцах. На сегодня можно встретить разные варианты передачи кадров от 60 и более Гц.
Преимущества прогрессивной развёртки
Новая усовершенствованная система имеет ряд преимуществ, которые делают лучшей среди других. К основным достоинствам относят:
- Отсутствие визуальных искажений изображения.
- Не нуждается в сглаживании видеоизображения.
- Можно масштабировать до максимально допустимого разрешения.
- Высокая чёткость передачи изображения.
- Не разбивается на два поля, поэтому изображение передаётся целостным.
Помните! Такая система не утомляет глаза, и делает просмотр телеканалов приятным и расслабляющим.
Стандарты разложения цифрового ТВ
Что такое прогрессивная развёртка в телевизоре? Стандарт разложения или как его ещё называют формат развёртки — это характеристика стандарта телевизионного вещания, которое определяет количество строк, передаваемых на экран ТВ.
Телевизионная развёртка используется как в телевизорах, так и в компьютерных мониторах. От стандарта разложения цифрового телевидения зависит чёткость передачи изображения на экран.
К стандартам разложения цифрового ТВ по европейским параметрам относят 625/50, по американским параметрам 525/60. В первом варианте картинка на экран выводится 625 строчками в двух полукадрах. Их частота составляет 50 Гц. В американской же версии отображается при помощи 525 строк с частотой 60 Гц в секунду.
Стандарты разложения были ещё сформированы во время электронно-лучевых трубок. Поэтому свой след они оставили ещё в старых моделях техники. Они имеют область гашения, именно из-за этого в каждом варианте их количество может значительно отличаться.
Часть линий генерируется горизонтально, часть вертикально. Это позволяет выводить на экран полное количество периодов в эпизоде. По европейскому стандарту из возможных 625 передаваемых линий, остаются рабочими только 576. Поэтому на новых современных компьютерах можно увидеть стандарт расширения 576i.
Новые жидкокристаллические варианты ТВ отличаются качеством передачи изображения и яркостью цветов. Они помогают наслаждаться просмотром телевидения без вреда для здоровья. Прогрессивная развёртка помогает улучшить изображение и сгладить картинку, сделав её более плавной и чёткой.
Источник: setafi.com