Что такое световод в телевизоре

Mnogoregimnoe volokno Patchcord Mnogovolokonnye svetovody 1

Световод (оптический волновод) — закрытое пассивное устройство для направленной передачи света. В открытом пространстве передача света возможна только в пределах прямой видимости, при этом возникают потери вызванные исходной расходимостью излучения, а так-же поглощением и рассеянием в атмосфере. Световоды позволяют передавать свет по криволинейным трассам, а так-же существенно уменьшить потери энергии излучения при её передаче на расстояние.

Ремонт подсветки LED TV Samsung 7 серии. Фатально повреждено стекло световода. Доработка BN44-00947A

  • 1 Типы световодов
  • 2 Устройство волоконных световодов
  • 3 См также
  • 4 Литература
  • 5 Внешние ссылки
  • 6 Примечания

Типы световодов [ ]

Существуют разнообразные типы световодов, основные среди них:

  • Линзовые (зеркальные) световоды, представляющие собой систему заключённых в светонепроницаемый кожух и расположенных на определённых расстояниях линз (зеркал), полые металлические трубы различных сечений и прочие аналогичные конструкции (находят применение в системах дневного освещения внутренних площадей зданий). Они представляют собой систему заключённых в светонепроницаемый кожух и расположенных на определённых расстояниях линз или зеркал. На внешней стороне таких световодов (расположенной обычно на крыше здания) находится концентратор собирающий попадающий на него солнечный свет и направляющий его в световод. На внутренней стороне такого световода (внутри помещений) находится светорассеиватель равномерно распределяющий свет по всему помещению или концентрирующий его в определённом месте. Такие световоды позволяют заметно сократить расходы уходящие на освещение внутренних помещений.
  • Гибкий диэлектрический волоконный световод с низкими оптическими потерями, позволяющий передавать оптическое излучение определённой длины волны на большие расстояния. Такое оптическое волокно применяется в настоящее время в связи, волоконно-оптических лазерах, волоконно-оптических усилителях и волоконно-оптических датчиках. Свет, попадающий на торец такого оптического волокна, может распространяться по нему на большие расстояния за счёт полного внутреннего отражения от боковых поверхностей. Использование световодов позволяет значительно уменьшить потери световой энергии при её передаче на расстояния, а также использовать криволинейные трассы. Используя различные легирующие примеси при изготовлении сердцевины оптического волокна создают активные оптические волокна, которые позволяют создавать оптические усилители излучения и волоконные лазеры Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой.
  • Многоволоконные световоды состоящие из большого числа оптических волокон упорядоченно уложенных в пучки и сведённые с обоих сторон к единым торцам. Они позволяют передавать изображение без искажения при их изгибе по любому криволинейному профилю. Такие многоволоконные световоды используют при создании целого класса приборов обычно называемых эндоскопами. Достаточно высокая световая эффективность таких световодов позволяет использовать их и при создании осветительных систем для самих эндоскопов. При этом источник освещения располагается вне прибора, что позволяет исключить чрезмерный нагрев исследуемого объекта. Многоволоконные световоды предназначенные только для передачи световой энергии изготовляют из множества беспорядочно уложенных волокон.

Устройство волоконных световодов [ ]

В простейшем варианте световод представляет собой тонкую нить из оптически прозрачного материала, сердцевина которой имеет показатель преломления n1, а оболочка с имеет показатель преломления n2 (при этом n2 < n1). Лучи входящие в сердцевину под достаточно малыми углами к оси световода, испытывают полное внутреннее отражение на поверхности раздела сердцевины и оболочки и распространяются только по сердцевине световода.

См также [ ]

  • Оптическое волокно
  • Многомодовое оптическое волокно
  • Одномодовое оптическое волокно
  • Оптические волоконные кабели

Литература [ ]

  • Сборник статей под ред. К.И. Блох “Световоды для передачи изображения”, Мир, 1961
  • Мидвинтер Дж., Волоконные световоды для передачи информации, пер. с англ., М., 1983
  • Хансперджер Р., Интегральная оптика, пер. с англ., М., 1985
  • Д и а н о в Е. М., Волоконная оптика: проблемы и перспективы, «Вестник АН СССР», 1989, № 10, с. 41

Источник: science.fandom.com

Как работает оптоволокно

Как работает оптоволокно

Пока вы читаете эти строки, терабайты данных курсируют по всему миру, запертые в стеклянных нитях, протянутых по дну океана. Напоминает магию, но это всего лишь продвинутая технология. Оптическое волокно — технология, которой, человечество обязано естествоиспытателям XIX века. Наблюдая за лучами света на поверхности пруда, они предположили, что светом можно управлять, но претворить в жизнь ту гениальную идею удалось только совсем недавно с появлением сложнейших заводов и тщательным изучением оптических свойств материалов.

Лучший Telegram-канал про технологии (возможно)

Запертый свет

Как работает оптоволокно

По медной витой паре (как в вашем интернет-кабеле) во множестве движутся электроны. Ток предается по проводнику и несет с собой закодированную в последовательности импульсов — информацию. Нули и единицы — двоичный код, о котором слышали, пожалуй, все. Оптический проводник сигнала работает по тому же принципу, но с точки зрения физики, с ним все гораздо сложнее. Тут могла бы быть получасовая лекция о квантовой механике, и о том, как множество именитых физиков пришли в тупик, пытаясь понять природу света, но постараемся обойтись без пространных рассуждений.

Достаточно держать в уме то, что подобно электронам, фотоны или световые волны (на самом деле в нашем контексте это одно и то же), могут переносить закодированную информацию. Так, например, на аэродромах, в случаях отказа радиосвязи, передают сигналы самолетам при помощи направленных прожекторов. Но то примитивный метод, да и работает он лишь на расстоянии прямой видимости. В то же время, по оптоволокну свет передается на километры и далеко не по прямой траектории.

Как работает оптоволокно

Чтобы добиться такого эффекта, можно было бы использовать зеркала. Собственно, с этого инженеры-испытатели и начали свои эксперименты. Они покрывали металлические трубы изнутри зеркальным слоем и направляли внутрь луч света. Но мало того, что подобные световоды стоили непомерно дорого. Свет многократно отражался от их стенок и постепенно затухал, терял силу и совершенно сходил на нет.

Еще по теме:  Телевизор не видит флешку после руфуса

Зеркала не годились. Иначе и быть не могло. Даже самое дорогое зеркало не идеально. Его коэффициент отражения меньше 100% и после каждого падения на зеркальную поверхность световой луч теряет часть энергии, а в замкнутом объеме световода таких преломлений происходит неисчислимое множество.

Тут-то и пришло время вспомнить о пруде и тех давних исследованиях, что основывались на наблюдении за поведением света в воде. Представьте, как луч закатного солнца падает на поверхность воды, преодолевает границу и направляется вниз, к дну пруда.

Как работает оптоволокно

Те из читателей, кто помнит школьный курс физики, наверняка уже догадываются, что свет изменит направление своего движения. Часть света пройдет под воду, чуть изменив угол своего движения, а другая незначительная часть света отразится обратно в небо, потому, как «угол падения равен углу отражения». Если долгое время наблюдать за этим явлением, однажды, можно заметить, что свет, отраженный от зеркала под водой, под определенным углом так и не сумеет вырваться наружу — отразится от границы воды и воздуха полностью, лучше, чем от всякого зеркала. Дело не в воде как таковой, а в сочетании двух сред с различными оптическими свойствами — неодинаковыми коэффициентами преломления. Для создания световой ловушки достаточно минимального их различия.

Гибкие световоды

Как работает оптоволокно

Материалы не столь уж важны. В физических опытах для детей, демонстрирующих этот эффект, часто используют воду и прозрачную пластмассовую трубку. Больше чем на пару метров в таком световоде световой луч не передать, но смотрится это красиво. По той же причине светильники и прочие декоративные изделия часто имеют в своей конструкции световоды из пластмасс. Но когда речь заходит о передаче информации на многие километры, требуются особые, сверхчистые материалы, с минимумом примесей и оптическими свойствами, близкими к идеальным.

В 1934 году американец Норман Р. Френч запатентовал стеклянный световод, который должен был обеспечить телефонную связь, но он толком не работал. Потребовалась масса времени, чтобы найти материал, который бы отвечал высочайшим требованиям к чистоте и прозрачности, изобрести оптическое волокно из диоксида кремния — чистейшего кварцевого стекла. Чтобы создать в прозрачном кремнии разность коэффициентов преломления, прибегают к хитрости. Центр прозрачной болванки, которая превратится в провод, оставляют чистым, в то время, как внешние слои насыщают германием — он изменяет оптические характеристики стекла.

Как работает оптоволокно

В таком случае, болванку обычно спекают из двух заранее приготовленных стеклянных трубок, вставленных одна в другую. Но можно поступить и наоборот, насытив сердцевину стекловолокна германием. Более технологичным и высококачественным стекловолокно получается, когда стеклянные трубки наполняют изнутри газом и ждут, пока германий сам осядет на стекло тончайшим слоем. Затем трубку разогревают и растягивают до метровой длины. При этом полость внутри закрывается сама.

Как работает оптоволокно

Получившийся стержень имеет сердцевину с одним коэффициентом преломления и оболочку с другими оптическими параметрами. Он то и послужит для изготовления оптического волокна. Пока тяжелая заготовка толщиной в руку ничем не напоминает провод, но кварцевое стекло хорошо растягивается.

Как работает оптоволокно

Подготовленную болванку поднимают на высоту десятиметровой башни, закрепляют на вершине и равномерно нагревают до пор, пока по консистенции она не будет напоминать нугу. Тогда из стеклянной болванки под собственным весом начинает тянуться тончайшая нить. По пути вниз она остывает и приобретает гибкость. Это может показаться странным, но сверхтонкое стекло прекрасно гнется.

Как работает оптоволокно

Готовое оптическое волокно, непрерывно поступающее вниз, окунают в ванну с жидким пластиком, образующим защитный слой на поверхности кварца, а затем сматывают. Так продолжается до тех пор, пока заготовка на вершине башни не будет полностью переработана в единую нить из сотни-другой километров оптического волокна.

Как работает оптоволокно

Из него, в свою очередь, будут сплетены кабели, содержащие от пары, до пары сотен отдельных стеклянных волокон, упрочняющие вставки, экранирующие слои и защитные оболочки.

  1. Осевой стержень.
  2. Оптическое волокно.
  3. Пластиковая защита оптических волокон.
  4. Пленка с гидрофобным гелем.
  5. Полиэтиленовая оболочка.
  6. Армирование.
  7. Внешняя полиэтиленовая оболочка.

Связь со скоростью света

Описанный процесс сложен, трудозатратен, требует постройки заводов и специального обучения от их персонала, и, тем не менее, игра стоит свеч. Ведь скорость света — это непреодолимый предел, максимальная скорость, с которой информация может распространяться в принципе. Соперничать с оптическим волокном в скорости передачи информации могут, разве что, линии прямой оптической связи, но никак не медные проводники, на какие бы ухищрения не шли их создатели. Сравнения демонстрируют превосходство оптического волокна над остальными средствами передачи информации лучше всего.

Как работает оптоволокно

Домашний интернет на постсоветском пространстве, зачастую, проводят по двужильной витой паре с проводниками толщиной в один — два миллиметра. Максимумом для нее, оказывается показатель в 100 мегабит в секунду.

Этого достаточно для пары компьютеров, но, когда в квартире оказываются умный телевизор, NAS, раздающий торренты, домашний сервер, несколько смартфонов и умных девайсов из мира интернета вещей, не хватит и восьмижильного провода. Ограничения канала связи становятся очевидны. Как правило, в виде артефактов и заикающихся киногероев на экране телевизора, или лагов в онлайн-играх. Оптоволокно толщиной 9 микрон обладает в 30 раз большей пропускной способностью, не говоря уже о том, что таких жил в проводе может быть несколько.

При этом оно компактнее и весит значительно меньше обычных проводов, что оказывается решающим преимуществом, при прокладке магистральных линий связи и планировании городских коммуникаций.

Как работает оптоволокно

Оптические кабели соединяют континенты, города и датацентры. В России первая такая линия, появилась в Москве. Первый подводный оптический кабель пролег между Санкт-Петербургом и датским Аберслундом. Затем оптоволокно протянулось между предприятиями, государственными учреждениями и банками.

В крупных городах получила распространение схема, при которой оптические линии связи доводят до отдельных многоквартирных домов, и, тем не менее, для рядового потребителя оптическое волокно все еще остается экзотикой. Нам бы было интересно узнать, как много наших читателей использует его дома, потому что, по большинству квартир по-прежнему тянется старая-добрая витая пара.

Еще по теме:  Рейтинг телевизоров фирм производителей

Как работает оптоволокно

Оптическое волокно не только дорогое и сложное в производстве. Еще дороже оказывается его квалифицированное обслуживание. Тут не обойтись без синей изоленты. При монтаже волокна кварца необходимо специальным образом сращивать, а линии оптоволоконной связи комплектовать дополнительным оборудованием.

Несмотря на то, что разность коэффициентов преломления в сердцевине и оболочке волокна в теории создает идеальный световод, запущенный по кварцевому проводу свет все равно затухает из-за примесей, содержащихся в стекле. Увы, избавиться от них полностью практически невозможно. Десятка молекул воды на километр оптического волокна уже достаточно, чтобы внести в сигнал ошибки и снизить расстояние, на которое его можно передать.

Как работает оптоволокно

С подобной проблемой сталкиваются инженеры-электрики и в случае с обычными проводами. Расстояние, на которое можно без проблем отправить сигнал по проводу они называют дистанцией регенерации.

Для стандартного телефонного кабеля она равняется километру, у экранированного кабеля — пяти. Оптоволоконная жила удерживает свет на расстоянии до нескольких сотен километров, но, в конце концов, сигнал все равно приходится усиливать, регенерировать. На классических линиях связи устанавливаются сравнительно дешевые и простые усилители. Для оптоволоконных – требуются сложные и высокотехничные агрегаты в которых используются редкоземельные металлы и инфракрасные лазеры.

В линию связи врезают небольшой участок специально подготовленного стекловолокна. Оно дополнительно насыщенно атомами эрбия, редкоземельного элемента используемого, помимо прочего, в атомной промышленности. Атомы эрбия в этом участке волокна находятся в возбужденном состоянии из-за дополнительной накачки светом. Проще говоря, их подсвечивают специально настроенным лазером.

Сигнал, проходящий такую область кабеля, усиливается примерно в два раза, поскольку атомы эрбия в ответ на воздействие излучают свет той же волны, что и входящий сигнал, а значит, сохраняют закодированную в нем информацию. После усилителя оптический сигнал может пройти еще около ста километров, прежде чем процедуру потребуется повторить.

Как работает оптоволокно

Такие системы требуют обученных специалистов для обслуживания и постоянного присмотра, так что экономическая выгода от прокладки индивидуальных оптических линий для конкретных абонентов остается сомнительной в большинстве стран мира. И все же, все мы используем стекловолокно для передачи сообщений. Весь современный интернет базируется на этой технологии и именно благодаря ей стали возможны интернет трансляции в сверхвысоком разрешении, видеостриминг, онлайн игры с минимальной задержкой, мгновенная связь с практически любой точкой планеты и даже мобильный интернет. Да, базовые станции сотовой связи также связывает стекловолокно.

Как работает оптоволокно

Несмотря на то, что ученые ищут новые пути построения коммуникационных сетей, мы не получим ничего более практичного еще очень долго. Экспериментальные технологии позволяют поднять информационную емкость стекловолокна в два-три раза, все более толстые многожильные стеклянные кабели ложатся на морское дно между континентами, однако принципиальные ограничения, накладываемые скоростью света, запертого в кварцевой жиле, преодолеть вряд ли удастся. Выходом видится отказ от кварца и связанных с ним ограничений, передача информации с помощью лазеров, но она возможна только по прямой. Следовательно, передатчики придется разместить в космосе или хотя бы в верхних слоях атмосферы. Подобные эксперименты в последние годы привлекли внимание крупнейших корпораций, но это уже совсем другая история.

Источник: trashbox.ru

Как работает оптоволокно: все подробности простым языком

WiFiGid

В момент чтения этого текста терабайты информации проходят по всей планете через стеклянные нити, протянутые всевозможными способами. Это больше напоминает волшебство, но на самом деле это одна из важнейших технологий, изобретенных человечеством.

Она появилась благодаря естествоиспытателям XIX века, которые в теории предположили возможность управления светом. Сама идея была воплощена в жизнь после более детального изучения оптических свойств разных материалов. Что такое оптоволокно, как работает, особенности и производство кабеля – все это темы нашей статьи.

Передача света

Как работает оптоволокно: все подробности простым языком

Через медную витую пару проходит огромное количество электронов. Ток переходит по проводнику, передавая закодированную последовательность импульсов – данные. Сам код состоит из нулей и единиц (двоичный). Оптоволокно отправляет сигналы по аналогичному принципу, хотя в плане физики здесь сложнее.

Лучше обойтись без теории и просто понимать, что аналогично электронам, световые волны также умеют передавать данные. К примеру, когда на аэродромах отказывает связь по радио, используется запасной вариант – сигналы отправляются по прожекторам. Однако, такой способ можно использовать лишь в прямой видимости, а оптоволокно передает свет на тысячи километров и не всегда по прямой.

Изначально ученые пытались передавать свет на долгие расстояния с помощью зеркал. Так, металлические трубы внутри покрывались зеркальным слоем и в них направлялся световой луч. Но цена таких световодов оказалась слишком высокой, а свет рано или поздно терял свои свойства и угасал.

Позже решение было найдено – свет можно запереть, если использовать для его передачи две среды с разными оптическими свойствами. При этом будет достаточно даже небольшого различия.

Как работает оптоволокно: все подробности простым языком

Световоды по новой технологии

Что такое оптоволокно, вы узнаете, посмотрев следующее видео:

Уже понятно, что для простой передачи света не столь важен выбор материалов. Для физических опытов в школе достаточно иметь под рукой воду и трубку из пластмассы. Тем не менее, для трансляции сигналов на тысячи километров необходимы максимально чистые материалы с практически идеальными оптическими свойствами и с минимальными примесями.

Наиболее подходящим материалом оказался диоксид кремния (кварцевое стекло). Для получения в нем разных коэффициентов преломления света используется хитрость. Так, его центр оставили чистым, а внешние слои насытили германием, позволяющим изменить свойства стекла.

Как работает оптоволокно: все подробности простым языком

Производство световолокна

Болванка (которая в будущем превратится в провод) спекается из двух подготовленных трубок, вставляемых одна в одну. Существует и другой вариант, когда сердцевина насыщается германием.

Еще по теме:  Ширина телевизора 37 дюймов

Однако, лучше наполнить трубки изнутри газом. Затем достаточно подождать, чтобы германий сам осел на стекло с минимальным слоем. После этого останется разогреть трубку и растянуть на метр. Вдобавок, полость внутри закроется самостоятельно.

У готового стержня будет сердцевина и оболочка с различными оптическими свойствами.

Как работает оптоволокно: все подробности простым языком

Именно он подходит для будущего оптоволоконного провода. Хотя заготовка с диаметром несколько десятков сантиметров не слишком его напоминает, зато стекло из кварца отлично можно растянуть.

Поэтому готовую болванку поднимают на башню с высотой 10 метров, укрепляют ее и начинают равномерно подогревать, чтобы ее консистенция начала напоминать нугу. Начиная с определенного момента, из болванки под ее весом начнет тянуться тонкая нить. Опускаясь вниз, она застынет и станет достаточно гибкой. Это вызывает удивление, однако, сверхтонкие стекла хорошо сгибаются.

Приготовленное оптоволокно, постоянно опускающееся вниз, спускают в наполненную жидким пластиком емкость. Это позволяет нанести защиту на кварцевую поверхность, затем нить сматывают. Процесс идет до того момента, пока болванка не превратится в одну нить, длиной 100-200 километров.

Уже с такой нити плетутся кабели, которые могут содержать от двух до двухсот стекловолокон. Далее кабель оснащают вставками для упрочнения, экранирующими слоями и оболочкой для защиты.

Как работает оптоволокно: все подробности простым языком

Передача информации со скоростью света

Для запуска в производство оптоволокна необходимо строить специализированные заводы, специально обучать персонал, не забывая при этом об огромных вложениях. В любом случае, вложения стоят полученной выгоды.

Скорость света – это максимальный предел, позволяющий обмениваться информацией. Медные провода такого предела достигнуть не могут.

Единственным конкурентом оптоволокна можно назвать линию прямого оптического соединения.

В постсоветских странах в основном домашний интернет проводят посредством двужильного кабеля, где толщина жил составляет от одного до двух миллиметров. Максимальная скорость передачи данных составляет 100 Мбит/сек. Ее вполне хватит для нескольких компьютеров, однако, при наличии Smart TV, NAS сервера и других смарт-устройств, будет недостаточно кабеля даже с восемью жилами. При этом у оптоволокна с толщиной 9 микрон пропускная способность в 30 раз выше, а сам оптоволоконный кабель работает на нескольких жилах.

Еще одно преимущество применения оптоволоконного кабеля – его меньший вес, по сравнению с медными проводами, и габариты. Это удобно при прокладывании магистральных линий.

Как работает оптоволокно: все подробности простым языком

Благодаря оптическим кабелям, появилась возможность соединить даже целые континенты. Например, в России первая линия была проложена в Москве. Подводным кабелем первым соединили Санкт-Петербург и Аберслунд (Дания).

После этого оптоволокно стали использовать для связи между предприятиями, банками и госучреждениями. Что касается интернета для населения, в городах применяется практика, когда такими линиями провайдеры подключают многоквартирные дома, а уже в квартиры интернет поступает при помощи традиционной витой пары. Тем не менее, некоторые пользователи уже начали переходить на оптику, хотя такая возможность доступна не всем.

Предлагаю к просмотру познавательный документальный фильм про оптоволокно:

Сложность технологии и ограничения

Оптоволокно не только дорого и сложно производить. Львиную долю затрат занимает его обслуживание. Здесь невозможно обойтись стандартной изолентой. Во время монтажа кабелей кварц нужно сращивать с применением специальной технологии, а линии необходимо доукомплектовывать дополнительным оборудованием.

Как работает оптоволокно: все подробности простым языком

Благодаря разным коэффициентам преломления света, в оболочке и сердцевине теоретически можно получить световод. Однако, пущенный через кварц свет будет постепенно затухать, поскольку свое дело делают примеси в стекле. При этом устранить этот недостаток полностью почти невозможно. Да и нескольких молекул H20 на целый километр провода хватит для появления ошибок в сигнале и понижения максимального расстояния его передачи.

Аналогичная проблема еще появлялась у электриков во время изготовления медных и других проводов. Позже был введен новый термин «дистанция регенерации» – максимальное расстояние, по которому без проблем передается сигнал.

Одна оптоволоконная жила в состоянии держать свет до двух-трех сотен километров. Однако, рано или поздно потребуется дополнительно усиливать и восстанавливать сигнал.

Для стандартных линий связи достаточно установить недорогие усилители. Для оптоволокна необходим монтаж сложного оборудования, для работы которого необходимо использовать редкоземельные металлы и запускать инфракрасные лазеры.

Так, в линию связи нужно врезать участок специального стекловолокна, насыщенного эрбием. Его атомы, благодаря накачиванию светом, будут находиться в возбужденном состоянии. Для поддержания такого состояния и нужен специальный лазер. Когда сигнал проходит через эту область, его мощность увеличивается почти вдвое, так как эрбий излучает свет, аналогичной сигналу, волны.

Следовательно, зашифрованная информация сохраняется также. Далее свет может пройти еще 100 километров, где нужно еще раз повторить усиление.

Для поддержания этой системы нужен обслуживающий персонал и беспрерывный присмотр. Поэтому экономический эффект от прокладки оптики для абонентов почти во всех странах мира остается под большим вопросом. Тем не менее, оптоволокно для передачи данных – универсальный вариант.

Именно на данной технологии основан интернет современного уровня, позволяющий передавать видео в высоком разрешении, вести видеостриминг, поддерживать серверы онлайн-игр практически без задержек, предоставлять моментальную связь между любыми городами мира, а также обеспечивать мобильную передачу данных. Ведь станции мобильных операторов соединены между собой тоже стекловолокнами.

Хотя специалисты работают над созданием новых средств коммуникации, более мощная технология появится в обиходе еще нескоро. Да, некоторые решения позволяют увеличить пропускную способность примерно в два раза, а между континентами прокладываются все более толстые жилы из кварца.

Обойти принципиальный предел, связанный с максимальной скоростью света, через кварц, скорее всего, не получится. Можно отказаться от кварца и обеспечить передачу сигнала лазерами. Однако, это можно делать только по прямой линии. Поэтому передатчики потребуется устанавливать только в космосе или хотя бы над орбитой земли.

Источник: wifigid.ru

Оцените статью
Добавить комментарий