Терморезистор, имеющий разновидности под названиями термистор или позистор — это радиоэлектронная деталь, сопротивление, принцип работы которого состоит в изменении его электрического сопротивления в зависимости от температуры.
Терморезистор изготавливается на основе полупроводниковых материалов, реагирующих на изменения температуры и данный материал должен обладать высоким ТКС (температурным коэффициентом сопротивления).
Температурный коэффициент электрического сопротивления — величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу.
В принципиальных схемах терморезистор обозначается так:
Конструктивно терморезисторы выглядят по разному.
Терморезистор изготавливают в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок преимущественно методами порошковой металлургии. Их размеры могут варьироваться в пределах от 1–10 мкм до 1–2 см.
Из монитора.Позистор,что за деталь?
Разновидность терморезистора — термистор (NTC — термистор) имеет отрицательный ТКС и с увеличением температуры его электрическое сопротивление уменьшается.
Другая разновидность терморезистора — позистор (PTC — термистор) имеет положительный ТКС и с увеличением температуры его электрическое сопротивление соответственно увеличивается.
Терморезисторы применяются в схемах разнообразных электронных устройств, где есть необходимость контролировать температурный режим работы и регулировать его с помощью изменения электрического сопротивления.
Терморезисторы c «отрицательным сопротивлением» применяются в качестве пусковых реле, реле времени, в системах измерения и контроля мощности, системах теплового контроля и пожарной сигнализации.
Терморезисторы с «положительным сопротивлением» используются в схемах контроля за изменением температуры и компенсации параметров электрического тока или напряжения электрических цепей, возникших вследствие изменения температуры.
Для проверки работоспособности терморезистора нам понадобится ампервольтомметр или мультиметр. Подсоединяемся щупами прибора к проверяемому терморезистору, измеряем сопротивление.
В нормальном состоянии терморезистор имеет номинальное сопротивление, однако при нагревании его сопротивление будет либо уменьшаться, либо увеличиваться. На картинке представлена проверка термистора, при увеличении температуры его сопротивление уменьшается от 5,1 Ома до 2,7 Ома.
Успехов Вам! Да прибудет с Вами умение!
ТЕРМИСТОР NTC.Для чего он нужен лампе и в блоке питания.Покажу наглядно как это РАБОТАЕТ
Источник: www.remotvet.ru
Что такое термистор
Термистор — это полупроводниковый элемент, который реагирует на изменения температуры. Основной характеристикой термистора является сопротивление, которое уменьшается или увеличивается за счет рабочей температуры.
Многие путают термистор с позистором, думая, что это одно и то же. Однако это не так, поскольку термисторы и позисторы предназначены для разных целей.
Основным предназначением термисторов является ограничения тока. Термистор служит в роли защитного устройства, которое защищает электроприбор от перегрева и перегрузок.
О том, что такое термистор вы и сможете узнать в данной статье сайта САМ Электрик ИНФО https://samelektrikinfo.ru/.
Что такое термистор и зачем он нужен
Итак, мы уже знаем, что термистор это полупроводник, который реагирует на изменение температуры. В отличие от позистора, сопротивление термистора при повышении температуры не увеличивается, а уменьшается.
На сегодняшнее время различается несколько видов терморезисторов — с отрицательными и положительными температурами. Терморезисторы с положительной температурой, это позисторы.
Они обозначаются как PTC (Positive Temperature Coefficient). И с отрицательной температурой, так называемые термисторы, о которых и идёт речь в данной статье. Они обозначаются как NTC (Negative Temperature Coefficient).
Понятно, что сопротивление термисторов и позисторов зависит от температурного режима. Термисторы реагируют на повышение температурного режима, а позисторы, наоборот, на его понижение. Таким образом, эти полупроводниковые элементы можно гибко использовать для ограничения работы, различных устройств и деталей.
Где применяются термисторы
Термисторы применяются в устройствах, которым важно поддерживать правильный температурный режим. Данные элементы служат в качестве защиты от перегрева и перегрузок в различных электротехнических устройствах. Этим они помогают предотвратить преждевременный их выход из строя.
На сегодняшний день термисторы применяются:
- В электротехнике;
- В компьютерной технике;
- В приборах высокой точности.
Хоть один термистор, но находится на компьютерной плате или внутри сетевого шуруповёрта. Это незаменимый элемент, который поможет уберечь от перегрева инструмент и значительно продлить срок его службы.
Многие задаются вопросом о том, а можно ли чем-то заменить термистор. Заменить термистор не получится, так как он имеет свои определенные характеристики и принцип работы. При измерении температуры изменяется и сопротивление термистора.
Условное обозначение термисторов на схеме
На принципиальных схемах терморезисторы, неважно, термистор это или позистор, обозначается, как обычный резистор с добавлением буквы «t». На фото ниже можно посмотреть, какое имеет условное обозначение термистор на схемах.
Как становится понятно, буква «t» указывает на температуру. Основные характеристики термисторов как раз и связаны с интервалом рабочих температур, номинальным сопротивлением при температуре 25 градусов и максимальным током.
Следует знать, что у термисторов отсутствует полярность. Поэтому их можно использовать в цепях переменного тока. Часто именно термисторы выходят из строя на плате, поэтому поиск неисправностей лучше всего начинать с проверки термистора мультиметром.
Источник: samelektrikinfo.ru
Термистор – характеристика и принцип действия
Термистор (терморезистор) – твердотельный электронный элемент, внешне напоминающий постоянный резистор, но обладающий выраженной температурной характеристикой. Этот вид электронных приборов, как правило, используются для изменения аналогового выходного напряжения с учётом изменения окружающей температуры. Другими словами – электрические свойства термистора и принцип действия напрямую связаны с физическим явлением — температурой.
- 1 Характеристика электронного элемента
- 1.1 Применение терморезисторов на практике
- 1.2 Отрицательный коэффициент ТКС
- 1.3 Применение термистора в роли активного датчика
- 1.4 Термистор как регулятор пускового тока
Характеристика электронного элемента
Термистор — термочувствительный полупроводниковый элемент, изготовленный на основе полупроводниковых оксидов металлов. Обычно имеет форму диска или шара с металлизированными или соединительными выводами.
Такие формы позволяют изменять резистивное значение пропорционально малым изменениям температуры. Для стандартных резисторов изменение сопротивления от нагрева видится нежелательным явлением. Но этот же эффект видится удачным при построении многих электронных схем, требующих определения температуры.
Таким образом, будучи нелинейным электронным устройством с переменным сопротивлением, терморезистор успешно подходит для работы в качестве терморезистора-датчика. Такого рода датчики широко применяют для контроля температуры жидкостей и газов.
Выступая твердотельным устройством, изготовленным на основе высокочувствительных оксидов металлов, терморезистор работает на молекулярном уровне. Валентные электроны становятся активными и воспроизводят отрицательный ТКС либо пассивными и тогда воспроизводят положительный ТКС.
В результате электронные приборы – термисторы, демонстрируют очень хорошую воспроизводимую резистивность, сохраняя эксплуатационные характеристики, позволяющие продуктивно работать в диапазоне температур до 200ºC.
Применение терморезисторов на практике
Базовым направлением применения, в данном случае, являются резистивные температурные датчики. Однако эти же электронные элементы, принадлежащие семейству резисторов, можно успешно использовать включенными последовательно с другими компонентами или устройствами.
Такая схема включения позволяет контролировать ток, протекающий через компонент. Таким образом, термисторы, по сути, выступают ещё и токоограничителями. Производятся термисторы разного типа, на основе различных материалов и отличаются по размерам в зависимости от времени отклика и рабочей температуры.
Существуют герметичные модификации приборов, защищённые от проникновения влаги. Есть конструкции под высокие рабочие температуры и компактные по размерам. Следует выделить три наиболее распространенных типа терморезисторов:
- шариковые,
- дисковые,
- инкапсулированные.
Работают приборы в зависимости от изменения температуры:
- На уменьшение резистивного значения.
- На увеличение резистивного значения.
То есть существует два типа приборов:
- Обладающие отрицательным ТКС (NTC).
- Обладающие положительным ТКС (PTC).
Отрицательный коэффициент ТКС
NTC-термисторы с отрицательным ТКС уменьшают собственное резистивное значение по мере увеличения внешней температуры. Как правило, именно эти приборы чаще выступают датчиками температуры, поскольку идеально подходят практически к любому типу электроники, где требуется контроль температуры.
Относительно большой отрицательный отклик термистора NTC означает, что даже небольшие изменения температуры способны значительно изменить электрическое сопротивление прибора. Этот фактор делает модели NTC идеальными датчиками точного измерения температур.
Терморезисторы NTC, снижающие сопротивление с повышением температуры, по исполнению доступны с различными базовыми сопротивлениями. Как правило, характеристика привязывается к базовым сопротивлениям при комнатной температуре.
Например: 25ºC берётся за контрольную (базовую) температурную точку. Отсюда выстраиваются значения приборов, допустим, следующих номиналов:
- 2,7 кОм (25ºC),
- 10 кОм (25ºC)
- 47 кОм (25ºC)….
Другой важной характеристикой является значение «В». Величина «В» представляет собой постоянную константу, которая определяется керамическим материалом, из которого изготовлен термистор.
Этой же константой определяется градиент кривой резистивного отношения (R/T) в определенном температурном диапазоне между двумя температурными точками. Каждый материал термистора имеет различную материальную константу и, следовательно, индивидуальную кривую отношения сопротивления и температуры.
Так, константа «B» определяет одно резистивное значение при базовой T1 (25ºС), и другое значение при Т2 (например, при 100ºC). Следовательно, значение B определит постоянную константу материала термистора, ограниченную диапазоном T1 и T2:
B * T1 / T2 (B* 25 / 100)
p.s. значения температуры в расчётах берутся в градуировке Кельвина.
Отсюда вытекает, что имея значение «В» (из характеристики производителя) конкретного прибора, электронщику останется только создать таблицу температур и сопротивлений, чтобы построить подходящий график при помощи следующего нормированного уравнения:
где: T1, T2 – температуры в градусах Кельвина; R1, R2 – сопротивления при соответствующих температурах в Омах.
Так, например, термистор NTK, обладающий сопротивлением 10 кОм, имеет значение «В» равным 3455 в рамках температурного диапазона 25 — 100ºC.
Очевидный момент: термисторы экспоненциально меняют сопротивление с изменениями температуры, поэтому характеристическая кривая приборов нелинейная. Чем больше контрольных точек устанавливаются, тем точнее получается кривая.
Применение термистора в роли активного датчика
Поскольку прибор является активным типом датчика, для работы требуется сигнал возбуждения. Любые изменения сопротивления в результате изменения температуры преобразуются в изменение напряжения.
Самый простой способ добиться подобного эффекта — использовать термистор как часть схемы делителя потенциала, как показано на рисунке ниже. Постоянное напряжение подаётся в цепь резистора и терморезистора.
К примеру, используется схема, где термистор 10 кОм включен последовательно с резистором 10 кОм. В этом случае выходное напряжение при базовой Т = 25ºC составит половину напряжения питания.
Таким образом, схема делителя потенциалов является примером простого преобразователя сопротивления в напряжение. Здесь сопротивление термистора регулируется температурой с последующим формирования величины выходного напряжения, пропорциональной температуре.
Простыми словами: чем теплее корпус термистора, тем ниже напряжение на выходе.
Между тем, если изменить положение последовательного резистора, RS и термистора RTH, в этом случае уровень выходного напряжения изменится на противоположный вектор. То есть теперь чем больше нагреется термистор, тем выше будет уровень выходного напряжения.
Использовать термисторы допускается и как часть базовой конфигурации с использованием мостовой схемы. Связью между резисторами R1 и R2 устанавливается опорное напряжение до требуемого значения. Например, если R1 и R2 имеют одинаковые значения сопротивления, опорное напряжение равно половине напряжения питания (V/2).
Схема усилителя, построенная с использованием этой мостовой схемы с термозондом, может выступать в качестве высокочувствительного дифференциального усилителя или в качестве простой схемы запуска Шмитта с функцией переключения.
Существует проблема, связанная с прохождением тока через термистор (эффект «самонагрева»). В таких случаях рассеиваемая мощность I 2 R достаточно высока и создаёт больше тепла, чем способен рассеять корпус прибора. Соответственно, это «лишнее» тепло влияет на резистивное значение, что приводит к ложным показаниям.
Одним из способов избавления от эффекта «самонагрева» и получения более точного изменения сопротивления от влияния температуры (R/T), видится питание термистора от постоянного источника тока.
Термистор как регулятор пускового тока
Приборы традиционно используются в качестве резистивных чувствительных к температуре преобразователей. Однако сопротивление термистора изменяется не только под влиянием окружающей среды, но также изменения наблюдаются от протекающего через прибор электротока. Эффект того самого «самонагрева».
Разное электрооборудование на индуктивной составляющей:
- двигатели,
- трансформаторы,
- электролампы,
- другое,
подвергается чрезмерным пусковым токам при первом включении. Но если в цепь последовательно включить термистор, можно эффективно ограничивать высокий начальный ток. Такое решение способствует увеличению срока службы электрооборудования.
Терморезисторы с низким ТКС (при 25°C) обычно используются для регулирования пускового тока. Так называемые ограничители тока (перенапряжения) меняют сопротивление до очень низкого значения при прохождении тока нагрузки.
В момент первоначального включения оборудования пусковой ток проходит через холодный термистор, резистивное значение которого достаточно велико. Под воздействием тока нагрузки термистор нагревается, сопротивление медленно уменьшается. Так осуществляется плавная регулировка тока в нагрузке.
Термисторы NTC достаточно эффективно обеспечивают защиту от нежелательно высоких пусковых токов. Преимущественной стороной здесь является то, что этот тип приборов способен эффективно обрабатывать более высокие пусковые токи по сравнению с резисторами стандартного образца.
Источник: zetsila.ru