В наше время технологии не стоят на месте, они стремительно развиваются, благодаря чему в мир выходят все новые, удивительные и высокотехнологичные устройства. Это касается и технологий изготовления LCD мониторов, которые на сегодняшний день пользуются наибольшим распространением и имеют самые большие перспективы. Но каково же устройство ЖК монитора и в чем его преимущества? Именно об этом и пойдет речь в данной публикации.
1. Что такое ЖК монитор
1.1. Принцип работы ЖК монитора
Для начала стоит разобраться, что же такое ЖК монитор. Для этого нужно понять, что такое LCD-дисплей. Как вы, наверное, уже догадались LCD это некое сокращение, полностью название имеет следующий вид – Liquid Crystal Display. В переводе на русский язык это означает жидкокристаллический дисплей. Таким образом, становится понятно, что ЖК и LCD – это одно и то же.
Данная технология построена на использовании специальных молекул жидких кристаллов, которые имеют уникальные свойства. Такие мониторы отличаются рядом неоспоримых преимуществ. Для того чтобы их понять стоит более детально разобрать принцип работы ЖК мониторов.
2. Устройство LCD монитора и принцип его работы
Как уже говорилось выше, для изготовления ЖК-дисплея используются специальные вещества, которые называются цианофенилами. Они находятся в жидком состоянии, однако при этом они имеют уникальные свойства, которые присущи кристаллическим телам. По сути – это такая жидкость, которая имеет анизотропию свойств, в частности оптических. Эти свойства связаны с упорядоченностью в ориентации молекул.
Принцип работы жидкокристаллических мониторов основывается на поляризационных свойствах молекул кристаллов. Эти молекулы способны пропускать исключительно ту составляющую света, вектор электромагнитной индукции которой располагается в параллельной оптической плоскости поляроида (молекулы кристалла). Другие световые спектры кристаллы не пропускают. Другими словами, цианофенилы являются световыми фильтрами, пропускающими только определенный световой спектр – один из основных цветов. Такой эффект и называется поляризацией света.
Благодаря тому, что длинные молекулы жидких кристаллов меняют свое расположение в зависимости от электромагнитного поля, появилась возможность управления поляризацией. То есть в зависимости от силы воздействующего электромагнитного поля на циенофенилы они меняют свое расположение и форму, тем самым меняя углы преломления света и меняя свою поляризацию. Именно благодаря сочетанию электрооптических свойств кристаллов и способности принимать форму сосуда такие молекулы получили название – жидкие кристаллы.
Именно на таких свойствах и основывается принцип работы LCD монитора. Благодаря изменению силы электромагнитного поля молекулы жидких кристаллов меняют свое положение. Таким образом, формируется изображение.
2.1. Матрица ЖК-дисплея
Матрица ЖК мониторы – это массив, состоящий из множества мельчайших сегментов, которые имеют название – пиксели. Каждым из этих пикселей можно управлять в отдельности, благодаря чему и возникает определенная картинка. Матрица LCD монитора состоит из нескольких слоев. Ключевая роль принадлежит двум панелям, которые изготовлены из свободного от натрия, а также абсолютно чистого стеклянного материала. Этот материал имеет название субстрат (или в народе – подложка). Именно между этими двумя слоями и располагается тончайший слой жидких кристаллов .
Помимо этого на панелях имеются специальные бороздки, которые контролируют кристаллы, задавая им нужную ориентацию (положение). Эти бороздки расположены параллельно друг другу на панели и перпендикулярны расположению бороздок на другой панели. То есть, на одной панели они горизонтальны, а на другой вертикальны.
Если посмотреть на экран через увеличительное стекло, то можно будет увидеть тончайшие полоски (вертикально и горизонтально). Они образуют маленькие квадратики – это и есть пиксели. Они бывают и круглой формы, но в подавляющем большинстве – квадратные.
Освещение жидкокристаллических панелей может реализовываться двумя способами:
Отражение света;Прохождение света.
При этом плоскость поляризации световых потоков может поворачиваться на 90˚ в момент прохождения через одну панель.
В случае возникновения электрического поля, молекулы кристаллов частично выстраиваются вертикально вдоль этого поля. При этом угол поворота плоскости поляризации световых потоков меняется, и становится отличным от 90˚. Благодаря этому свет беспрепятственно проходит сквозь молекулы.
Такой поворот плоскости абсолютно невозможно заметить невооруженным глазом. Из-за этого появилась потребность в добавлении к стеклянным панелям еще двух других слоев, которые играют роль поляризационных фильтров. Они пропускают исключительно такие спектры световых лучей, ось поляризации которых соответствует установленному значению. Другими словами, благодаря дополнительным панелям в момент прохождения света через поляризатор он будет ослаблен. Интенсивность света зависит от угла между плоскостью поляризации (дополнительных панелей) и осью поляризатора (основные стеклянные панели).
Если напряжение отсутствует, то ячейка будет абсолютно прозрачной, так как первый поляризатор исключительно тот свет, который имеет соответствующее направление поляризации. Направление поляризации задается молекулами жидких кристаллов, и к тому времени, как свет поступит ко второму поляризатору, он уже будет повернут, чтобы пройти через него без затруднений.
В случае воздействия электрического поля поворот вектора поляризации осуществляется на меньший угол. Это в свою очередь делает второй поляризатор частично прозрачным для потоков света. Если сделать так, что поворот плоскости поляризации в молекулах жидких кристаллов вовсе будет отсутствовать, то свет будет полностью поглощаться вторым поляризатором. Другими словами при освещении задней части дисплея передняя часть будет качаться абсолютно черной.
2.2. Управление поляризацией в ЖК мониторах при помощи электродов
Учитывая это, разработчики оснастили дисплеи достаточным количеством электродов, которые создают разные электромагнитные поля в отдельных частях экрана (в каждом пикселе). Благодаря такому решению они достигли возможности, в условиях правильного управления потенциалами этих электродов, воспроизводить на экране дисплея буквы, и даже сложные разноцветные картинки. Эти электроды могут обладать любой формой и располагаются в прозрачном пластике.
Благодаря современным новшествам в технологии, электроды имеют весьма небольшие размеры – их практически не видно не вооруженным глазом. Благодаря этому на относительно небольшой площади дисплея можно разместить достаточно большое количество электродов, что позволяет увеличить разрешение ЖК-дисплея. Это в свою очередь позволяет улучшить качество отображаемой картинки и воспроизводить даже самые сложные картинки.
2.3. Получение цветного изображения
Принцип работы жидкокристаллических мониторов заключается в довольно сложных процессах. Однако благодаря этому пользователь получает высокое качество изображения на своем мониторе. Для того чтобы отображать цветную картинку, дисплею LCD необходима задняя подсветка, благодаря которой свет будет исходить из задней части экрана. Это позволяет пользователям наблюдать максимально высокое качество изображения, даже в условиях затемненной окружающей среды.
Принцип работы ЖК мониторов для вывода цветной картинки основывается на применении все тех же трех основных цветов:
Для получения этих спектров используется три фильтра, отсеивающие остальные спектры видимого излучения. При помощи комбинирования этих цветов для каждого пикселя (ячейки) достигается возможность вывода полноценной цветной картинки.
На сегодняшний день существует два способа для получения цветной картинки:
Использование нескольких фильтров, расположенных друг за другом. Это приводит к малой доле пропускаемого света.Использование свойств молекул жидких кристаллов. Для отражения (или поглощения) излучения нужной длины можно изменять силу напряжения электромагнитного поля, которое влияет на расположение молекул жидких кристаллов, тем самым фильтруя излучение.
Каждый производитель выбирает свой вариант получения цветного изображения. Стоит отметить, что первый способ более простой, однако второй – более эффективный. Также стоит отметить, что для повышения качества изображения в современных ЖК-дисплеях, которые обладают высоким разрешением экрана, используется технология STN, позволяющая поворачивать плоскости поляризации света в кристаллах на 270˚. Также были разработаны такие типы матриц как TFT и IPS.
Именно TFT и IPS матрицы пользуются наибольшим распространением в наше время.
TFT – это Thin Film Transistor. Другими словами – это тонкопленочный транзистор, который управляет пикселем. Толщина такого транзистора составляет 0,1-0,01 микрон. Благодаря этой технологии появилась возможность достичь еще более высокого качества изображения путем управления каждым пикселем.
Технология IPS – это самая новая разработка, позволяющая достичь наивысшего качества изображения. Она предоставляет максимальные углы обзора, однако имеет большее время отклика. То есть медленнее реагирует на изменения напряжения. Однако разница во времени между 5 мс и 14 мс абсолютно не видна.
Теперь вы знаете, как работает ЖК монитор. Однако это еще не все. Существует такое понятие как частота обновления экрана.
3. Частота обновления экрана ЖК монитора
Частота обновления экрана – это характеристика, которая обозначает количество возможных изменений изображения в секунду – количество кадров в секунду. Измеряется этот показатель в Гц. Частота обновления экрана влияет на качество изображение, в частности на плавность движений. Максимальный видимый предел частоты составляет 120 Гц.
Частоту выше этого предела мы увидеть не сможем, поэтому увеличивать ее нет смысла. Однако для того, чтобы монитор смог работать на такой частоте необходима мощная видеокарта, которая сможет выдавать те же 120 Гц с запасом.
Помимо этого, частота обновления экрана влияет на органы зрения и даже на психику. Выражается такое воздействие в первую очередь на усталости глаз. При низкой частоте мерцания глаза быстро устают и начинают болеть. Кроме этого, у людей со склонностью к эпилепсии могут вызываться припадки.
Однако в современных LCD мониторах используются специальные лампы для подсветки матрицы, которые имеют частоту свыше 150 Гц, а указываемая частота обновления больше влияет на скорость смены картинки, но не на мерцание дисплея. Поэтому LCD мониторы меньше всего влияют на органы зрения и организм человека.
4. Как работает LCD-дисплей: Видео
4.1. Требуемая частота монитора для просмотра 3D
Для использования активных и поляризационных 3D очков используются LCD матрицы, имеющие частоту обновления экрана 120 Гц. Это необходимо для того, чтобы разделить изображения для каждого глаза, при этом частота для каждого глаза должна составлять не менее 60 Гц. Мониторы с частотой 120 Гц можно использовать и для обычных 2D фильмов или для игр. При этом плавность движений заметно лучше, нежели в мониторах с частотой 60 Гц.
Помимо этого, в таких мониторах используются специальные лампы или LED (светодиоды) подсветка, имеющая еще более высокую частоту мерцания, которая составляет около 480 Гц. Это в свою очередь существенно уменьшает нагрузку на органы зрения.
В современных мониторах можно встретить два метода реализации подсветки матрицы:
LED – светодиодная подсветка;Люминесцентные лампы.
Все крупные производители переходят на использование LED подсветки, так как она имеет значительные преимущества перед люминесцентными лампами. Они ярче, компактнее, экономичнее и позволяют достичь более равномерного распределения света.
Благодаря использованию новейших технологий ЖК-мониторы абсолютно не уступают своим прямым конкурентам – плазменным панелям, а в некоторых случаях даже превосходят их .
Источник: www.uhd4k.ru
Из каких материалов сделан компьютерный монитор?
Сегодня при производстве компьютерных мониторов и прочих периферийных устройств особый акцент делается на возможности рециркуляции материалов, из которых они изготавливаются. К счастью, современные мониторы производятся из более доступных для повторного использования материалов, что в основном произошло благодаря отказу от использования электронно-лучевых трубок. Тем не менее, некоторые материалы в мониторах по-прежнему остаются токсичными, поэтому стоит избегать их выбрасывания на свалку – куда безопаснее и экологичнее использовать эти материалы повторно при производстве новых устройств.
LCD дисплеи
Большинство компьютерных мониторов сегодня используют жидкокристаллические панели, в которых установлен массив полупроводниковых диодов, посылающих управляющие электрические сигналы на тонкопленочные транзисторы, расположенные между двумя тонкими стеклянными подложками. Так как сами по себе LCD панели не генерируют свет, для пропускания света через управляемые жидкие кристаллы используется массив флуоресцентных ламп или светодиодов. С видеоадаптера компьютера сигнал о графической картинке поступает на небольшие электронные платы с транзисторной управляющей схемой, интегрированные в дисплей. Большинство современных мониторов упакованы в пластиковый корпус, но иногда в нем используют и металлические элементы.
CRT дисплеи
До появления жидкокристаллических дисплеев основным видом были дисплеи на базе электронно-лучевой трубки (ЭЛТ), в которой формировался электронный луч, строчные геометрические перемещения которого (развертка) вызывали свечение люминофора, напыленного на внутреннюю поверхность экрана. В остальном конструкция, схема и состав компонентов старого CRT дисплея во многом совпадает с LCD. В тоже время массогабаритные показатели CRT дисплея значительно превосходят аналогичные показатели жидкокристаллических дисплеев при одинаковом разрешении экрана. Это объясняется прежде всего тем, что экран CRT дисплея выполняется из толстого стекла, которое предназначено для защиты пользователя от интенсивного рентгеновского излучения, испускаемого с поверхности катода ЭЛТ вместе с полезным излучением.
Токсические материалы
Для того, чтобы показывать яркую, чистую картинку производители дисплеев вынуждены использовать токсические материалы. Например, CRT дисплеи могут содержать несколько десятков грамм свинца в каждой электронно-лучевой трубке для создания защитной пленки (от радиоактивного излучения катода).
А LCD дисплеи все еще используют в своем составе арсенид, который исключает появление микроскопических пузырьков между стеклянными пластинами панели. Лампы подсветки, используемые в первых поколениях жидкокристаллических мониторов, содержат приличное количество ртути. Сегодня производители продолжают использовать другие токсические вещества при производстве печатных плат. Хотя в современных устройствах перечисленные вещества присутствуют в небольших количествах, безопасных для пользователя, их накопление на свалках может привести к сильной степени загрязнения окружающей среды, включая воду и воздух.
Переработка
Так как во всех компьютерных мониторах присутствуют токсические вещества, то следует прибегать к их вторичной переработки вместо выбрасывания на свалку. Многие производители и магазины сегодня принимают электронное оборудование для вторичной обработки. Например, американские компании Apple и Dell официально заявляют о том, что они используют токсические вещества из сданных старых устройств повторно при производстве новых дисплеев.
Источник: kompik63.ru
Типы современных мониторов
Монитором обычно называют экран (дисплей) на котором что-то отображается. Однако экран в кинотеатре нельзя назвать монитором, следовательно, монитор — это устройство с экраном основной функцией которого является отображение чего-либо.
Что является и может являться монитором
Любой телевизор подключенный к компьютеру или к видеокамере автоматически становится монитором. Но сам по себе телевизор это конечно не монитор, хотя он также является устройством с экраном. На многих электронных устройствах есть экран, например на мобильном телефоне. Но такой экран монитором тоже никто не называет.
Однако, любое устройство с экраном теоретически способно сделаться монитором. Потому что монитор это дополнительное устройство. Он обязательно должен быть к чему-нибудь подключен, например, к компьютеру, видеокамере или любому другому источнику видеосигнала. Сам по себе монитор ничего не показывает.
Виды мониторов
Мониторами мы привыкли называть экраны (дисплеи) для компьютеров и видеокамер. Все они делятся на две глобальные категории — ЭЛТ и ЖК.
В настоящее время для компьютеров выпускаются только жидкокристаллические мониторы. Мониторы на основе электро-лучевой трубки, или так называемые «стекляшки», практически сняты с производства.
ЖК-мониторы намного удобнее и практичнее ЭЛП, но качество изображения на них хуже:
Во-первых, откалиброванный ЭЛТ-монитор высокого класса гораздо лучше (естественнее) передаёт цветовую гамму, чем любой ЖК-монитор. Поэтому до сих пор профессионалы работающие в области полиграфии, фото и компьютерной графикой используют высококачественные ЭЛТ-мониторы. ЖК-мониторы пока не обеспечивают такой верности цветопередачи.
Во-вторых, на ЭЛТ мониторах никогда нет «смазов» или других оптических эффектов при воспроизведении динамических сцен. Время отклика люминофора в ЭЛТ-трубке всего лишь 1-2 мс. В то время как у матриц ЖК-мониторов реальное время отклика 12-15 мс. Указываемые производителями стандартных ЖК мониторов показатели времени отклика 8, 6 или даже 2 мс являются чисто рекламным трюком.
Ведь это время не спада полной яркости, а спада яркости только в определенной, наиболее заметной для глаза спектральной области, и не до нескольких процентов, а зачастую просто до следующего уровня градации яркости. Это приводит к тому, что в динамичных сюжетах ЖК мониторы всегда «смазывают» быстроменяющиеся детали.
В-третьих, ЭЛТ- мониторы одинаково хорошо воспроизводят изображение в любых разрешениях, особенно тонкие линии и буквы (текст). ЖК-монитор хорошо показывает только если выставлено его родное (стандартное) разрешение, которое равно числу пикселей по вертикали и горизонтали его экрана. Остальные варианты разрешения ЖК-монитору приходится интерполировать встроенной электроникой, что очень заметно на глаз и конечно сильно портит впечатление. К примеру, в нестандартных разрешениях на ЖК-мониторе текст может отображаться нечётко, а линии выглядеть размытыми.
Так же, на ЭЛТ-мониторах можно смотреть видео в формате 3D. В отличие от ЖК-мониторов, ЭЛТ-мониторы способны работать с коммутационными (затворными) стереоочками. Чтобы наблюдаемое 3D стереоизображение не мерцало, частота кадровой развертки у ЭЛТ-монитора должна быть не менее 100 Гц (практически все современные ЭЛТ мониторы соответствуют этому условию).
Самым существенным преимуществом ЖК-мониторов перед ЭЛТ является то, что они не мерцают. Поэтому ЖК-мониторы намного безопаснее для глаз.
Когда ЭЛТ мониторы станут редкостью, а это произойдёт довольно скоро, спрос и цены на них могут существенно вырасти. Так произошло с ламповыми усилителями звука класса Hi-End. Такие усилители сейчас сняты с массового производства, поэтому стоят гораздо дороже транзисторных. Однако, ламповые усилители воспроизводят звук гораздо лучше транзисторных и поэтому до сих пор востребованы.
Типы матриц ЖК-мониторов
ЖК-мониторы в основном различаются между собой по типам матриц.
Самым распространенным и дешевым типом матрицы на сегодняшний день является TN+film (Twisted Nematic). К достоинствам этого типа относятся малое время отклика и низкая цена. К недостаткам можно причислить относительно малые углы обзоры, посредственная цветопередача, невысокая контрастность, отсутствие хорошего черного цвета. Если в процессе работы перегорит один из транзисторов, то на экране появится ярко горящий битый пиксель, в то время, как у матриц других типов битый пиксель будет черным.
Матрицы типа IPS (In Plane Switching) и S-IPS (Super IPS) отличают широкие углы обзора, высокое качество цветопередачи, высокая контрастность и идеальный черный цвет. К недостаткам относятся большое время отклика и высокая энергоемкость. К тому же мониторы на основе такой матрицы отличаются достаточно высокой стоимостью.
Помимо вышеперечисленных типов существуют MVA (Multidomain Vertical Aligment) и PVA (Patterned Vertical Alignment) матрицы. Так как по своим свойствам эти матрицы очень похожи, то часто их объединяют в единый тип MVA/PVA. Матрицы этого типа отличают широкие углы обзора, высокая контрастность и яркость, хорошая цветопередача и черный цвет. Время отклика у них меньше чем у матриц IPS , но больше чем у TN+film.
Типы покрытия ЖК-мониторов
В основном на ЖК-мониторах применяется два вида покрытия: глянцевое и матовое (антибликовое). Глянцевое покрытие обеспечивает визуально лучшее изображение. Цвета кажутся контрастней и ярче. Однако мониторы с таким покрытием более маркие, и при неправильном освещении на нем видны блики и отражения. На матовом покрытии благодаря рассеиванию падающего света бликов не создается, что очень удобно, особенно если выработаете в помещении с ярким освещением.
Порт DVI или цифровой видео вход
Еще один важный параметр — наличие на мониторе порта DVI (Digital Video Interface). Мониторы, оснащенные только аналоговым VGA-входом (D-Sub), содержат дополнительные схемы для преобразования данных в цифровой формат (АЦП — аналогово-цифровой преобразователь). В случае с DVI видеосигнал в монитор идёт напрямую, без преобразования, так что и картинка получается более четкой, чем при использовании VGA-входа.
Похожие записи
Как выбрать экраны для видеостены?
Представление информации в форме видео сегодня очень популярно. С появлением больших мультимедийных проекторов и мониторов появилась.
PA328Q – 32-дюймовый монитор от компании ASUS
Компания ASUS представила новую модель 4К монитора, которая направлена на профессиональное использование. Новинка, получившая название PA328Q.
Сверхширокоформатный монитор u3477Pqu от AOC
Компания AOC разработала новую модель широкоформатного монитора, имеющего 34-дюймовый (86,7 см) экран с расширением 3440 на.
Источник: video-practic.ru