Большой минус ламп накаливания и галогенных ламп – нагревание в процессе эксплуатации. Наибольшая часть потребляемой энергии расходуется именно на нагрев, а не на освещение, из-за чего такие лампы имеют низкий показатель энергоэффективности. К тому же такие лампы невозможно поменять голыми руками, если они работали некоторое время, и их нельзя использовать с бумажными плафонами, натяжными потолками или рядом с картинами из-за риска возгорания. Светодиодные лампы отличаются высокой энергоэффективностью, но нагреваются ли они? В этой статье расскажем о рабочей температуре светодиодных ламп, должны ли они нагреваться и о причинах, почему некоторые лед лампы слишком сильно греются.
Должна ли нагреваться led лампа
Любые приборы, которые работают от электроэнергии, нагреваются, и светодиодная лампа не исключение. Но температура нагрева светодиодных ламп гораздо ниже, чем у лампы накаливания.
Как и любой электроприбор, светодиодные лампы нагреваются во время работы
Многие думают, что лед-источники света не нагреваются совсем, но это миф. Появился он из-за того, что разница температуры нагревания классической лампы накаливания и светодиодной существенно различаются, колба первой может нагреваться до 268°С. До какой же температуры нагреваются светодиодные лампы?
Корпус led прибора имеет температуру не выше 80°C, в большинстве случаев — от 30°C до 65°C/ Поэтому то, что светодиодная лампа греется в люстре, натяжном потолке или торшере — абсолютная норма. Но если она сильно греется и до нее невозможно дотрагиваться на протяжении 3-5 секунд, то можно говорить о неисправности лампы.
Почему светодиодная лампа нагревается
Мы уже подробно рассказывали об устройстве светодиодной лампы. Кратко повторим, из каких частей она состоит, чтобы объяснить, какие именно элементы вызывают нагревание.
Устройство светодиодной лампы:
- В основании лампочки находится цоколь – он вкручивается в светильник.
- Между ним и колбой размещается радиатор, он матовый и похож на часть корпуса лампы. Но, на самом деле радиатор нужен для того, чтобы отводить тепло от диодов.
- Внутри радиатора размещаются основание цокольной части и драйвер. Драйвер – чрезвычайно важная деталь светодиодной лампы, именно он понижает напряжение электрической сети.
- Над радиатором установлена непосредственно колба, которая может быть разной формы и размера, например, груша, свеча, шар, цилиндр или софит.
- Под колбой, внутри, располагается печатная плата вместе с ЧИП-светодиодами. Она передает тепло с диодов на радиатор.
Тепло внутри лед-лампочки образуется на ЧИП-светодиодах и с них передается на радиатор. Это происходит благодаря алюминиевой плате. Затем тепло выводится через радиатор. Светодиоды – единственная часть лед-лампы, которая нагревается. Часть этого тепла они отдают на внешние элементы источника света.
Так, например, цоколь не нагревается сам по себе, но на него может передаваться тепло с радиатора.
Как сильно нагревается светодиодная лампа
Как мы уже упомянули, миф о том, что светодиодные лампы всегда холодные, родился вследствие разницы температур разных типов ламп. Светодиодные лампы нагреваются, но, какая же температура считается допустимой, а когда можно заподозрить неисправность осветительного прибора?
Нормальная температура работающей светодиодной лампы – от 15°C до 80°C
Если же температура прибора выше этого показателя, значит, лампа была изготовлена с использованием дешевых комплектующих. Если радиатор или плата некачественные, то тепло отводится плохо. Долгое время такая лампа не проработает. Регулярный или сильный перегрев приводит к поломке светодиодов, поэтому покупать слишком дешевые светодиодные лампы — невыгодно. Они проработают гораздо меньший срок и потребуют более частой замены, чем продукция Alexled, которая производится из надежных комплектующих.
Источник: alexled.ru
Греются ли светодиодные лампы
Перед тем как приобрести такой источник света и установить его нужно понять греются ли светодиодные лампы? Для этого нужно немного разобраться в самой конструкции, пока ещё инновационного осветительного прибора. Все существующие светодиодные лампы состоят из:
Источник светового потока — светодиод, их может быть как один, так и множество в зависимости от желаемой мощности. Такие светодиоды в лампах называют иногда чипами.
Рассеиватель — служит для того, чтобы свет от светодиодов рассеивался равномерно и мягко. Изготавливается из поликарбоната и других сортов пластика.
Печатной платы, на которой установлены светодиоды. Она обеспечивает эффективную передачу вырабатываемого тепла через термопасту на теплоотводящий металл (радиатор).
Радиатор — часть лампы, отвечающая за отведение тепла, вырабатываемого светодиодами. Зачастую изготавливается из анодированного алюминия, реже из обычного. Конструкция радиатора имеет ребристую форму, для увеличения площади теплопередачи.
Драйвер — требуется для преобразования переменного тока в постоянный и выпрямления пульсаций напряжения.
Полимерное основание корпуса цоколя служит для изоляции всей от конструкции от пробоя электрическим током.
Цоколь — служит для соединения токопроводящих частей светодиодной лампы с патроном.
Конструкция и процесс изготовления подробно описан в видео:
Температура нагрева светодиодных ламп
Светодиодная лампа, как и все приборы, преобразующие электрический ток в свет, выделяют некоторое количество тепла. Источники света на светодиодной основе, греются в несколько раз меньше, если сравнивать с лампами накаливания. В светодиодной лампе не нагревается ни цоколь, ни рассеиватель. Происходит выделение тепла только на самом кристалле светодиода, и большую часть тепла выделяет драйвер. Тепловая энергия передается на радиатор и успешно рассеивается им.
Как сильно нагреваются светодиодные лампы важно понимать тем, кто планирует использовать их возле горючих предметов — натяжной потолок, мебель, подсветка штор и пр. Сила нагрева зависит от мощности и логично, что менее мощный светодиод меньше греется. Реальный КПД ламп оценивается в 80%.
Т.е. при мощности светодиодной лампы 10 Вт — 2 Вт уйдет исключительно на выработку тепла. Температура нагрева светодиодной ламы достигает в максимальной горячей точке всего лишь 65 °C, по сравнению с лампами накаливания, температура которых спокойно доходит до 265 °C. Так, что при вопросе в магазинах «какие лампочки не нагреваются?» — имеются в виду светодиодные.
Нужно так же помнить, что в светодиодной лампе есть элементы которые греются намного сильнее. Так, конденсатор может нагреваться более 100 °C. И это его абсолютно нормальная рабочая температура. Конденсатор размещается на драйвере и укрыт корпусом, достать его без повреждения конструкции невозможно.
Конденсатор — элемент на печатной плате, предназначенный для сглаживания пульсаций и мерцаний напряжения в сети. Работает в диапазоне от 85 до 260 В.
В итоге можно выделить несколько факторов, от которых зависит как сильно нагреваются светодиодные лампы:
- Качество материалов как радиатора, так и всех компонентов;
- Мощность лампы;
- Качество сборки;
- Окружающая температура воздуха.
Источник: svetodiodinfo.ru
Уместны ли светодиоды там, где жарко?
В современных условиях просто неудобно использовать в проектах освещения что-либо, кроме светодиодов — рискуешь прослыть ретроградом. Вот и ставят светодиодные светильники не только в прохладные кондиционируемые офисы, но и в литейные цеха, а то и в бани. И только печальный опыт эксплуатации способен научить некоторых потребителей, что светодиоды не любят высокие температуры. Неужели современные технологии так и не решили эту проблему?
Светодиод представляет собой полупроводниковый прибор, который чувствителен к изменению температуры. При увеличении температуры происходит увеличение количества дефектов в кристаллической решетке, из-за чего падает КПД устройства. Выводы, через которые на светодиод подается питание, выполнены из металла. При повышении температуры увеличивается диффузия атомов металла в структуру полупроводника, что также ухудшает параметры светодиодов. Вот почему при увеличении температуры светодиода срок его службы снижается.
Используемые для освещения белые светодиоды имеют еще один «фактор риска». У них кристалл, дающий синее излучение, покрыт слоем люминофора, благодаря которому в итоге и получается белое свечение. При высоких температурах люминофор деградирует, что сопровождается не только снижением светового потока, но и изменением спектра, в частности, увеличением размера так называемого «синего пика» до опасных для здоровья значений.
Но каким образом определить температурный предел, до которого можно эксплуатировать светодиоды и светильники на их основе?
Температура внутри и снаружи
Заглянув в технические данные современного светодиода, вы обнаружите, что он, как правило, способен работать при температуре до +125°C. Для более дорогих и продвинутых моделей светодиодов верхний предел простирается еще выше. В то же время температура в русской бане не поднимается выше +70°C, в финской сауне — выше +110°С.
В рабочей зоне литейного цеха температура в реальности не более +37,4°C. Правда, светильники устанавливаются там под потолком, где температура может достигать +60°С, но, все-равно, она значительно ниже предельно допустимой. Казалось бы, нет никаких проблем для внедрения светодиодов. Но это только на первый взгляд.
В технических данных на светодиод указываются номинальное и максимально допустимое значения температуры p-n-перехода. Если отбросить технические подробности, то этот показатель означает температуру внутри кристалла светодиода. Под максимально допустимой подразумевается такая температура, выше которой светодиод очень быстро выйдет из строя.
Для номинальной температуры p-n-перехода производитель нормирует основные технические параметры. При более низких температурах, чем номинальная, светодиоды показывают характеристики лучше заявленных. При более высоких — резко уменьшается срок службы и падает энергоэффективность. У самых современных светодиодов значение номинальной температуры p-n-перехода составляет 85°C. То есть в финскую сауну светодиодные светильники точно поставить невозможно.
На интуитивном уровне можно вывести правило: внутри светодиода температура выше, чем на внешней поверхности его корпуса. В свою очередь, внешняя поверхность корпуса светильника нагревается до меньшей температуры, чем внешняя поверхность корпуса светодиода. Но как это можно описать в виде формул?
Для определения срока службы светодиодов полный прогон на протяжении заявленного времени не применяется, так как за 50 000 часов (более 5 лет) испытываемая модель светодиода просто устареет. Опытные образцы тестируются за более короткие сроки (порядка 2000 часов) при повышенной температуре, далее определяется степень деградации, исходя из которой по специальным формулам вычисляется срок службы при номинальной температуре.
Тепловое сопротивление
Отвод тепла от светодиода с помощью пассивной системы подчиняется закону теплопроводности Фурье: в установившемся режиме поток энергии, передающийся посредством теплопроводности, прямо пропорционален градиенту температуры T на единице пути x этого потока со знаком «минус». В рассматриваемом случае поток энергии равен мощности P, рассеиваемой светодиодом:
где λ — коэффициент теплопроводности материала.
Для практических целей удобно пользоваться понятием теплового сопротивления Rt. Тепловое сопротивление между двумя точками определяется как отношение разницы температур между ними к проходящему между ними тепловому потоку, в нашем случае — выделяемой светодиодом мощности:
Если мы имеем дело с однородной средой, то этот показатель связан с λ следующим соотношением:
где h — толщина слоя материала, через который проходит поток тепловой энергии, а S — площадь теплообмена.
Тепловое сопротивление в системе СИ выражается в кельвинах на ватт (K/Вт). Но поскольку в формуле (2) используется только разность двух температур, а
T, выраженные в K и °C численно равны, для инженерных целей используется также размерность °C/Вт.
Большинство правил, действующих для электрического сопротивления, точно так же действуют и для теплового сопротивления. В частности, при прохождении потока тепловой энергии через несколько элементов конструкции светильника их тепловые сопротивления суммируются. Исходя из (3), можно составить уравнение:
где Rd — тепловое сопротивление между p-n-пере-ходом и контактной площадкой корпуса светодиода, Rl — тепловое сопротивление между контактной площадкой корпуса светодиода и окружающей средой (включает в себя, при наличии, тепловое сопротивление монтажной платы, термопасты и радиатора), Tj — температура p-n-перехода светодиода, Tout — температура окружающей среды.
Отсюда следует, что значение температуры окружающей среды, при котором температура p-n-перехода будет иметь заданное значение, составит:
Устойчивость драйвера к высокой температуре
Надежность светодиодного светильника определяется не только источником света, но и драйвером. Современной тенденцией является использование в драйверах транзисторов на основе GaN. Максимальная температура p-n-перехода для них составляет около 200°C. Поскольку в современных драйверах транзисторы работают в ключевом режиме, характеризующемся минимальным нагревом, продолжительная работа GaN транзисторов при температуре окружающей среды около +70°C вполне возможна.
Наиболее уязвимыми элементами драйвера являются электролитические конденсаторы.
Поскольку они практически не выделяют тепла, то будут работать при температуре окружающей среды. Для современных электролитических конденсаторов номинальной температурой является +85°C. То есть современный уровень развития технологий позволяет создать драйвер для светодиодного светильника, который может работать в русской бане или в литейном цеху. Но способны ли выдержать такие условия светодиоды?
Оценка для лучшего типа светодиодов
Для того, чтобы дать оценку верхнего предела температуры окружающей среды, при которой может работать светильник, оснащенный пассивным радиатором, рассмотрим конструкцию на основе одного светодиода, специально предназначенного для работы в сложных условиях. Выберем один из самых современных светодиодов Cree Xlamp XP-L2. Его отличительными особенностями являются номинальная температура p-n-перехода +85°С и малое тепловое сопротивление между p-n-переходом и контактной площадкой — всего 2,2°C/Вт.
Если вам предлагают приобрести светодиодные светильники, предназначенные для установки внутри сауны, это, скорее всего, обман. Современные светодиоды не могут стабильно работать при температуре, характерной для сауны.
При токе, протекающем через светодиод, 1 А, падение напряжения на нем составляет около 3 В. То есть светодиод в нормальном режиме работы потребляет мощность 1 A х 3 В = 3 Вт. Световой поток в таком режиме будет составлять около 500 лм. КПД данного светодиода составляет около 40%, отсюда следует, что примерно 60% потребляемой энергии уходит в нагрев устройства. Но компания Cree рекомендует при расчетах теплоотвода в светильниках на основе данной серии светодиодов принять, что в нагрев уходит 75% потребляемой мощности, тем самым обеспечивается необходимый «запас прочности». Таким образом, светодиод рассеивает мощность, равную 0,75 х 3 Вт = 2,25 Вт.
Конструкция светодиода Cree Xlamp XP-L2 требует установки его на монтажную плату, которая, в свою очередь, крепится к теплоотводу. Минимальное значение теплового сопротивления платы на металлической основе с конструкцией, рекомендованной Cree, составляет 3,5°C/Вт. Тепловое сопротивление термопасты примем за 1°C/Вт.
Запрет на галогенные лампы в Евросоюзе относится главным образом к лампам с цоколями E14 и E27 и GU10. Галогенные лампы с цоколем G9 до сих пор разрешены, что позволяет финнам париться в сауне с искусственным освещением, а китайским производителям — выпускать для них светильники с соответствующими патронами. Под запрет также не попадают галогенные лампы, питающиеся от сети через понижающий трансформатор, а именно они должны использоваться по нормам во влажных условиях русской бани. В общем, еврочиновники не обидели своим запретом любителей попариться.
Используем в данной конструкции один из лучших радиаторов в своем классе MechaTronics CoolStar Black 8630 с тепловым сопротивлением 2,1°C/Вт. Получаем Rl = 3,5°C/Вт + 1°C/Вт + 2,1°C/Вт = 6,6°C/Вт. Подставляя данные в формулу (5), получаем, что температура p-n-перехода не превысит номинального значения +85°C, если Tout не превысит 65°C. Разница между температурой p-n-перехода и окружающей средой составит не менее 20°C.
Из этого следует, что такой светильник может использоваться в горячих цехах на производстве.
В русской бане температура p-n-перехода составит более +90°C, что приведет к уменьшению срока службы светодиода и падению его энергоэффективности. Наконец, в финской сауне температура p-n-перехода составит +130°C, что означает практически мгновенный выход светодиода из строя.
Несколько улучшить тепловые показатели можно, заменив простой радиатор на систему охлаждения с трубками, заполненными специальной жидкостью. Ее тепловая температура составляет около 0,5°C/Вт. Тогда Rl = 5°C/Вт. Согласно формуле, Tout не должна превышать +69°C. Да, если все идеально изготовлено, то такой светильник можно и поставить, с некоторым допущением, в русскую баню.
Только вот стоимость его будет настолько велика, что никогда не окупится выигрыш от замены галогенных ламп на светодиоды. А вот на производстве снижение температуры p-n-перехода даже на несколько градусов позволяет получить ощутимую выгоду за счет увеличения срока службы и повышения энергоэффективности светильника.
Выводы
Современные светодиоды и драйверы, специально разработанные для использования при высоких температурах, позволяют создавать светодиодные светильники, надежно работающие на производстве в горячих цехах при условии, что температура в месте их установки не превышает +60°C.
Использование светодиодных светильников в русской бане в случае применения теплоотвода с трубками, заполненными жидкостью, возможно, но с точки зрения экономии в настоящее время нецелесообразно.
Применение светодиодов для внутреннего освещения в финской сауне недопустимо.
Для того, чтобы правильно выбрать светодиодный светильник для работы в условиях высоких температур, следует ознакомиться с техническими характеристиками применяемых в нем светодиодов и драйвера. Их параметры должны нормироваться при высокой температуре (около +85°C). Без этих данных высокая предельная температура ничего не означает, поскольку при приближении к ней технические характеристики могут значительно снижаться.
И, самое главное, помните, что применение именно светодиодов не может быть самоцелью. В том случае, если температура в освещаемом помещении слишком высока для нормальной работы светодиодов, применение традиционных источников света (например, галогенных ламп) оказывается более выгодным.
Источник: Алексей Васильев, журнал «Электротехнический рынок» № 3 май-июнь 2019
Источник: www.elec.ru