Новые нормативы утверждены Постановлением Главного государственного санитарного врача Российской Федерации № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи». Они будут действовать до 1 января 2027 года.
Время занятий
Новые правила касаются многих аспектов школьной жизни. Прежде всего — времени: нельзя начинать занятия раньше 8:00 и проводить «нулевые» уроки. Запрещено обучение в три смены, а занятия второй смены необходимо заканчивать не позднее 19:00. Каникулы не могут длиться менее 7 календарных дней.
Важный показатель для школьников — учебная нагрузка. Максимально допустимая нагрузка на ребенка в первом классе не должна превышать 4 уроков. Один раз в неделю допустимо организовывать 5 уроков за счет физкультуры. При этом у первоклассников учебный процесс должен укладываться только в пятидневку и исключительно в первую смену.
Учебное расписание
1 класс
- Сентябрь — октябрь: 3 урока в день по 35 минут каждый.
- Ноябрь — декабрь: 4 урока по 35 минут.
- Январь — май: 4 урока по 40 минут.
В середине третьей четверти первоклашкам полагаются дополнительные каникулы.
2–4 классы
У учеников начальных классов должно быть не более 5 уроков в день. Так же, как и у первоклашек, возможно проводить один раз в неделю 6 уроков за счет физкультуры.
5–6 классы
Не более 6 уроков ежедневно.
7–11 классы
В старшей школе не рекомендуется проводить более 7 уроков в день. Кроме того, среда или четверг должны стать облегченным днем «для предупреждения переутомления», как предписывают правила. Урок не может длиться более 45 минут.
Важно: организация профильного обучения в 10–11 классах не должна приводить к увеличению нагрузки.
Продолжительность перемен между уроками составляет не менее 10 минут. После второго или третьего урока должна быть большая перемена — 20–30 минут. Школы на свое усмотрение могут организовывать две больших перемены.
Оборудование классов
Меньшие по размеру парты необходимо расставлять ближе к доске, бóльшие по размеру — дальше от доски. В учебных помещениях нельзя вместо стульев использовать табуретки и скамейки.
Нужно обращать внимание и на размеры доски и мониторов: диагональ интерактивной доски должна составлять не менее 165,1 см, а минимальная диагональ монитора компьютера или ноутбука — не менее 39,6 см, для планшета — 26,6 см. Использование мониторов на основе электронно-лучевых трубок в образовательных организациях запрещено.
Для образовательных целей мобильные средства связи не используются.
При этом для электронных средств обучения (ЭСО) введены жесткие нормы и ограничения. Общая продолжительность использования ЭСО на уроке не должна превышать:
Государственное санитарно-эпидемиологическое нормирование в РФ
- интерактивной доски для детей до 10 лет — 20 минут, старше 10 лет — 30 минут;
- компьютера для детей 1–2 классов — 20 минут, 2–4 классов — 25 минут, 5–9 классов — 30 минут, 10–11 классов — 35 минут.
В начальных классах при работе на ноутбуке необходимо использовать дополнительную клавиатуру. Если на уроке применяются ЭСО, то на рабочем месте ребенка зрительная дистанция до экрана должна быть не менее 50 см. Планшеты размещаются на столах с наклоном в 30°. Наушники можно использовать непрерывно не более 1 часа при громкости не более 60% от максимальной. ЭСО необходимо ежедневно дезинфицировать.
Постановление «Об утверждении санитарных правил СП 2.4.3648-20»
Санитарные правила рекомендуют учителям и воспитателям организовывать для учеников физкультурные паузы, проводить гимнастику для глаз, следить за осанкой детей во время занятий.
Количество учеников в классе
Площадь учебных кабинетов рассчитывают следующим образом: не менее 2,5 кв. м на одного ученика при фронтальных формах занятий и не менее 3,5 кв. м при групповых занятиях. И это без учета площади, необходимой для расстановки шкафов, тумб и другой мебели.
Ремонтные работы
Проведение всех видов ремонтных работ в учреждении в присутствии детей не допускается.
Оснащение кухни и столовой
В столовых и буфетах нельзя пользоваться деформированной, с дефектами и механическими повреждениями кухонной и столовой посудой и инвентарем. Кроме того, столовые приборы (вилки, ложки) из алюминия теперь под запретом.
Оборудование, инвентарь, посуда и тара должны быть выполнены из материалов, предназначенных для контакта с пищевыми продуктами и предусматривающих возможность их мытья и обеззараживания. При этом в школах разрешено использовать одноразовые приборы и столовую посуду.
Профилактические и противоэпидемические меры
Правила направлены на охрану здоровья детей, и в частности на предотвращение инфекционных и массовых неинфекционных заболеваний. В постановлении указано:
- Здания, где проживают дети, должны находиться от школ и детских садов на расстоянии не более 500 метров, в условиях стесненной городской застройки — 800 метров, а в сельской местности — до 1 километра. Если же расстояние превышает эти показатели, то должен быть организован транспорт.
- Дети при нахождении в школах более 4 часов должны получать горячее питание.
- В образовательных организациях запрещается применение обогревателей с инфракрасным излучением.
- При возникновении групповых инфекционных заболеваний образовательная организация в течение 2 часов должна проинформировать территориальные органы исполнительной власти об этом и приступить к профилактическим мероприятиям.
- Работники образовательных организаций должны регулярно проходить медицинские осмотры, иметь медкнижку и проходить вакцинацию в соответствии с национальным календарем прививок.
Официальный интернет-портал правовой информации, информационное агентство ТАСС
Источник: xn--80aidamjr3akke.xn--p1ai
26. Монитор с электронно-лучевой трубкой
Монитор с электронно-лучевой трубкой похож на телевизор. Электронно-лучевая трубка представляет собой электронно-вакуумное устройство в виде стеклянной колбы, в горловине которой находится электронная трубка, на дне — экран со слоем люминофора. При нагревании, электронная пушка излучает поток электронов, которые с высокой скоростью двигаются к экрану.
Поток электронов (электронный луч) проходит через фокусирующую и отклоняющую катушку, которая направляет его в определенную точку люминофорного покрытия экрана. Под действием электронов, люминофор излучает свет, который видит пользователь. Люминофор характеризуется временем излучения после действия электронного потока.
Электронный луч двигается довольно быстро, расчерчивая экран строками слева направо и сверху вниз. Во время развертки, то есть передвижения по экрану, луч влияет на те элементарные участки люминофорного покрытия, где может появиться изображение. Интенсивность луча постоянно изменяется, что обуславливает свечение соответствующих участков экрана. Поскольку, свечение исчезает очень быстро, электронный луч должен непрерывно пробегать по экрану, восстанавливая его.
Время излучения и частота обновления свечения должны соответствовать друг другу. Преимущественно, частота вертикальной развертки равна 70-85 Гц, то есть свечение на экране возобновляется 70-85 раз в секунду. Снижение частоты обновления приводит к миганию изображения, что утомляет глаза. Соответственно, повышение частоты обновления приводит к размыванию или удвоению контуров изображения.
Мониторы могут иметь как фиксированную частоту развертки, так и разные частоты в некотором диапазоне. Существует два режима развертки: Interlaced (черезстрочная) и Non Interlaced (построчная). Обычно, используют порядковую развертку. Луч сканирует экран построчно сверху вниз, формируя изображение за один проход.
В режиме черезстрочной развертки, луч сканирует экран сверху вниз, но за два прохода: сначала нечетные строки, потом четные. Проход при черезстрочной развертке занимает вдвое меньше времени, чем формирование полного кадра в режиме построчной развертки. Поэтому время обновления для двух режимов одинаково.
Экраны для мониторов с электронно-лучевой трубкой бывают выпуклые и плоские. Стандартный монитор — выпуклый. В некоторых моделях используют технологию Trinitron, в которой поверхность экрана имеет небольшую кривизну по горизонтали, по вертикали экран абсолютно плоский. На таком экране наблюдается меньше бликов и улучшено качество изображения. Единственным недостатком можно считать высокую цену.
Дисплеи на жидких кристаллах (Liquid Crystal Display — LCD)
В дисплеях на жидких кристаллах безбликовый плоский экран и низкая мощность потребления электрической энергии (5 Вт, по сравнению, монитор с электронно-лучевой трубкой потребляет 100 Вт).
Существует три вида дисплеев на жидких кристаллах:
- монохромный с пассивной матрицей;
- цветной с пассивной матрицей;
- цветной с активной матрицей.
Источник: studfile.net
Мониторы с электронно-лучевой трубкой
Электронно-лучевая трубка (ЭЛТ; Cathode Ray Tube, или CRT) — это традиционная технология формирования изображения на «дне» герметично запечатанной стеклянной «бутылки”. Мониторы получают сигнал от компьютера и преобразуют его в форму, воспринимаемую электронно-лучевой пушкой, расположенной в «горлышке” огромной колбы. Пушка «стреляет” в нашу сторону, а широкое дно (куда мы, собственно, и смотрим) состоит из «теневой маски» и люминесцентного покрытия, на котором создается изображение. Электромагнитные поля управляют пучком электронов: отклоняющая система изменяет направление потока частиц таким образом, что они достигают нужного места на экране, проходя через теневую маску, падают на фосфоресцирующую поверхность и формируют изображение (активизированный электронным лучом участок экрана испускает свет, видимый глазом; рис.1). Такая технология называется «эмиссионной”
Экран монитора представляет собой матрицу, состоящую из гнезд-триад, определенной структуры и формы (зависящей от конкретной технологии изготовления — см. далее). Каждое такое гнездо состоит из трех элементов (точек, полос или других структур), формирующих RGB-триаду, в которой основные цвета располагаются настолько близко друг к другу, что отдельные элементы неразличимы для глаза. Таким образом, электронно-лучевые трубки, используемые в современных мониторах, имеют следующие основные элементы:
- · электронные пушки (по одной на каждый цвет RGB-триады или одну, но испускающую три пучка);
- · отклоняющую систему, то есть набор электронных «линз”, формирующих пучок электронов;
- · теневую маску, обеспечивающую точное попадание электронов от пушки каждого цвета в «свои” точки экрана;
- · слой люминофора, формирующий изображение при попадании электронов в точку соответствующего цвета.
С этими элементами и связана непрерывная борьба производителей за качество изображения. Электронная пушка состоит из подогревателя, катода, испускающего поток электронов, и модулятора, ускоряющего и фокусирующего электроны.
В современных кинескопах применяются оксидные катоды, в которых электроны испускаются эмиссионным покрытием из редкоземельных элементов, нанесенным на никелевый колпачок с расположенной внутри него нитью накала. Подогреватель обеспечивает нагревание катода до температуры 850-880°C, при которой и происходит испускание (эмиссия) электронов с поверхности катода.
Остальные электроды трубки используются для ускорения и формирования пучка электронов. Соответственно каждая из трех электронных пушек создает пучок электронов для формирования своего цвета. При этом различают ЭЛТ с дельтовидным и планарным расположением пушек.
В случае дельтовидного расположения электронные пушки размещаются в вершинах равностороннего треугольника под углом 1° к оси кинескопа. Ошибка в значении угла наклона не должна превышать 1′. Наклон пушек выбирается таким образом, чтобы электронные лучи пересекались в некоторой точке (точке схождения) и дальше, расходясь на определенный угол, образовывали на маске небольшой круг, в пределах которого одновременно может находиться только одно отверстие теневой маски и одна RGB-триада (три точки люминофора основных цветов). Соответственно точки люминофора при этом также располагают по вершинам равностороннего треугольника, образующего эту триаду. Центр каждого отверстия в теневой маске расположен напротив оси симметрии данной триады точек люминофора. Электронные лучи, расходясь после теневой маски, попадают на точки люминофора соответствующего цвета и заставляют их светиться
Электронный луч достигает экрана, пройдя через теневую маску, которая может иметь различную (точечную или линейную) структуру. Теневая маска, выполненная из тонкого сплава, направляет электронный луч на флуоресцирующий материал определенного цвета.
контроллер графический компьютер монитор
При этом маска задерживает 70-85% всех электронов, испускаемых катодами, в результате чего она нагревается до высокой температуры. Раньше маски изготавливали из сплавов на основе железа, и при сильном нагревании они деформировались, в результате чего отверстия смещались относительно триад люминофора.
Для компенсации смещений маска крепилась к экрану при помощи системы «замков” из материала со специально подобранным коэффициентом температурного расширения; при нагревании эти «замки» перемещали маску вдоль оси ЭЛТ в сторону экрана. В современных моделях применяется теневая маска из инвара — специального сплава с очень небольшим коэффициентом температурного расширения, поэтому смещение масок при нагреве остается минимальным.
В кинескопах с планарным расположением пушек используются щелевые маски, а люминофор трех основных цветов наносится на экран в виде вертикальных чередующихся полосок таким образом, чтобы одному щелевидному отверстию соответствовала своя RGB-триада. В таких ЭЛТ все три электронные пушки соосны друг другу, расположены в одной вертикальной плоскости и наклонены под небольшим углом к горизонтальной плоскости. Такое расположение в значительной мере позволяет скомпенсировать воздействие на пучки электронов магнитного поля Земли и упростить сведение лучей. Расходясь после точки схождения, лучи образуют эллипс, охватывающий одновременно только одно отверстие щелевой маски и соответственно три находящиеся за ней полоски люминофора. Отверстие щелевой маски находится напротив средней (зеленой) полоски люминофора. Отношение площади отверстий к общей площади маски в электронно-лучевых трубках такого типа значительно выше, чем у теневой маски, поэтому та же яркость свечения может быть достигнута при значительно меньшей мощности электронных пучков и, следовательно, срок службы таких кинескопов существенно больше
С тыльной стороны монитора устанавливаются катушки горизонтального и вертикального отклонения луча, придающие лучу, при протекании по ним тока, нужное направление. Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные. Последние предпочтительнее, поскольку создают пониженный уровень излучения.
По достижении поверхности экрана луч взаимодействует с ним, при этом энергия электронов преобразуется в световую. Экран представляет собой обладающую особыми оптическими свойствами стеклянную поверхность, на которой распылен специальный фосфоресцирующий материал. Высокое качество изображения достигается правильным выбором материалов и технологии. Фосфоресцирующий материал должен обеспечивать требуемую энергетическую эффективность, разрешающую способность, долговечность, точную цветопередачу и послесвечение
Маска электронно-лучевой трубки монитора имеет определенное число отверстий, через которые проходят электронные лучи RGB. Под величиной зерна понимается расстояние между соседними точками одного цвета. Распространенный показатель разрешающей способности монитора — число точек на дюйм (dpi — dots per inch) — определяется отношением числа точек к размеру экрана в дюймах по горизонтали. Например, dpi 14-дюймового монитора в режиме VGA (640 точек по горизонтали) составляет 65
Антибликовая панель (AR panel)
Для минимизации отражающих свойств экрана используются специальные антибликовые панели. Не ухудшая изображения, они ослабляют блики, а также уменьшают электромагнитное излучение монитора. Однако, ввиду высокой стоимости таких панелей, они используются в дорогих мониторах с большим разрешением, например в 21-дюймовых. В последнее время вместо антибликовой панели на мониторах с диагональю 21 дюйм и меньше используют антибликовое покрытие. Такое покрытие, как и панели, ограничивает излучение в соответствии со стандартами ТСО. Новые технологии позволяют перейти к коммерческому использованию мониторов с антибликовым покрытием
Используя тот же принцип и те же свойства, что и в антибликовых панелях, для придания монитору антибликовых свойств непосредственно на экран монитора наносят многослойное антибликовое покрытие, не ухудшающее фокусировку монитора
Антистатическое покрытие экрана обеспечивается с помощью напыления специального химического состава для предотвращения накопления электростатического заряда. Оно требуется в соответствии с рядом стандартов по безопасности и эргономике, в том числе MPR II
Отношение полезной световой энергии, прошедшей через переднее стекло монитора, к излученной внутренним фосфоресцирующим слоем называется коэффициентом светопередачи. Как правило, чем темнее выглядит экран при выключенном мониторе, тем ниже этот коэффициент.
При высоком коэффициенте светопередачи для обеспечения требуемой яркости изображения требуется небольшой уровень видеосигнала и упрощаются схемотехнические решения. Однако при этом уменьшается перепад между излучающими участками и соседними, что влечет за собой ухудшение четкости и снижение контрастности изображения и, как следствие, — ухудшение его общего качества. В свою очередь, при низком коэффициенте светопередачи улучшаются фокусировка изображения и качество цвета, однако для получения достаточной яркости требуется мощный видеосигнал и усложняется схема монитора. Обычно 17-дюймовые мониторы имеют коэффициент светопередачи 52-53%, а 15-дюймовые — 56-58%, хотя в зависимости от конкретно выбранной модели эти значения могут варьироваться. Поэтому при необходимости определения точного значения коэффициента светопередачи следует обращаться к документации производителя
Время горизонтального перемещения луча от левого до правого края экрана называется периодом горизонтальной развертки. Величина, обратно пропорциональная этому периоду, называется частотой горизонтальной развертки, или просто горизонтальной разверткой (иногда встречаются названия «частота строчной развертки”, или «строчная частота”), и измеряется в килогерцах (кГц). Например, для монитора с разрешением 1024 x 768 пикселов горизонтальная развертка обратно пропорциональна времени, за которое луч сканирует 1024 пиксела. При увеличении разрешающей способности за тот же период времени лучом должно быть отсканировано большее число пикселов. При увеличении частоты кадров частота горизонтальной развертки также должна быть увеличена
Вертикальная развертка, или частота кадров
Монитор с электронно-лучевой трубкой обновляет изображение на экране десятки раз в секунду. Это число называется частотой вертикальной развертки, или частотой обновления экрана, и измеряется в герцах (Гц). Монитор с вертикальной разверткой 60 Гц имеет такую частоту мерцания, как лампа дневного света в США (несколько выше, чем в Европе, где частота сети 50 Гц).
Обычно при частотах выше 75 Гц мерцание незаметно для глаза (режим без мерцания). Стандарт VESA рекомендует работу на частоте 85 Гц, считая это важным потребительским показателем эргономичности монитора. Расчет частоты горизонтальной развертки исходя из частоты кадров: Горизонтальная развертка = (число строк) x (вертикальная развертка) x 1,05. Например, требуемая горизонтальная развертка при вертикальной частоте 85 Гц и разрешении 1024 x 768 составляет: 768 x 85 x 1,05 = 68 500 Гц = = 68,5 кГц
Разрешающая способность характеризует качество воспроизведения изображения монитором. Для получения высокого разрешения в первую очередь высококачественным должен быть видеосигнал. Электронные цепи должны обработать его таким образом, чтобы обеспечить правильные уровни и сочетания фокусировки, цвета, яркости и контраста. Разрешающая способность характеризуется числом точек, или пикселов (dot) на число строк (line). Например, разрешение монитора 1024 x 768 означает возможность различить до 1024 точек по горизонтали при числе строк до 768
Под частотой точек (dot rate) понимают максимальное число входящих точек в секунду, которое определяется разрешением по горизонтали и периодом сканирования по горизонтали источника сигнала. Полоса пропускания характеризует то, насколько полно исходный видеосигнал преобразуется в выходной. Частота точек = (разрешение по горизонтали) / (горизонтальная развертка) Полоса пропускания = 0,35 x 2/ (время нарастания или спада сигнала)
Например, если горизонтальное разрешение 820 точек, а период отображения данных по горизонтали 10,85 нс = 10,85 x 10-6 с, то требуется частота пикселов (pixel rate) примерно 76 МГц. Монитор с высоким разрешением может выводить на экран в 24 раза больше информации, нежели телевизор
Регулировкой яркости устанавливается ее уровень на экране в целом, включая зону растра. Управление контрастом позволяет устанавливать яркость зоны данных, изменяя коэффициент усиления входного видеосигнала и не влияя на яркость зоны растра
Контраст характеризует яркость экрана по сравнению с темной зоной в отсутствие видеосигнала. Контраст можно настроить регулировкой «Усиление”, воздействуя на входной видеосигнал. Под равномерностью понимается постоянство уровня яркости по всей поверхности экрана монитора, которое обеспечивает пользователю комфортные условия для работы. Временная неравномерность цвета может быть устранена размагничиванием экрана. Принято различать «равномерность распределения яркости» и «равномерность белого”
Равномерность распределения яркости, белого
Большинство мониторов имеют различную яркость в разных участках экрана. Отношение яркости в наиболее светлой части к яркости в наиболее темной называется равномерностью распределения яркости. Равномерность белого (white uniformity) характеризует различие в яркости белого цвета на экране монитора по всей его поверхности (при выводе изображения белого цвета). Численно равномерность белого равна отношению максимальной и минимальной яркости
Сведение: статическое, динамическое
Для получения четкого изображения и чистых цветов на экране монитора красный, зеленый и синий лучи, исходящие из всех трех электронных пушек, должны попадать в точно заданное место на экране. Термин «несведение лучей» означает отклонение красного и синего от центрирующего зеленого. Под статическим несведением понимается несведение трех цветов (RGB), одинаковое на всей поверхности экрана, вызванное незначительной погрешностью при сборке электронной пушки. Изображение на экране может быть откорректировано регулировкой статического сведения. В то время как в центре экрана монитора изображение остается четким, на его краях может проявиться несведение. Оно вызывается ошибками в обмотках или при их установке и может быть устранено с помощью магнитных пластин
Электронный луч, если не предприняты специальные меры, расфокусируется (увеличивается в диаметре) по мере удаления его от центра экрана. Для компенсации искажения формируется специальный компенсирующий сигнал. Величина компенсирующего сигнала зависит от свойств ЭЛТ и ее отклоняющей системы. Чтобы устранить смещение фокуса, вызванное различием в путях пробега луча (расстоянии) от электронно-лучевой пушки до центра и до краев экрана, требуется увеличивать напряжение с ростом отклонения луча от центра с помощью высоковольтного трансформатора.
Чистота и четкость изображения достигается, когда каждый из электронных лучей RGB падает на поверхность экрана в строго определенной точке. Отсюда следует, что требуется выверенная взаимосвязь между электронной пушкой, отверстиями теневой маски и точками фосфоресцирующей поверхности (люминофора) экрана. Нарушение чистоты и четкости изображения могут быть обусловлены следующими причинами:
- · наклоном электронной пушки или смещением луча;
- · смещением центра пушки вперед или назад;
- · отклонением луча, вызванным влиянием внешних магнитных полей, включая магнитное поле Земли.
Монитору свойственно мерцание. Оно связано с тем, что по истечении определенного времени происходит ослабление излучения света фосфором. Чтобы поддерживать свечение, экран должен быть подвержен периодическому воздействию луча от электронно-лучевой трубки.
Мерцание становится заметным, если интервал времени между воздействиями слишком велик или недостаточно время послесвечения фосфоресцирующего вещества экрана. Эффект мерцания может также усугубляться ярким экраном и большим углом зрения к нему. Устранению мерцания как проблеме эргономики в последнее время уделяется все больше внимания — мерцание экрана, таким образом, становится ключевым коммерческим показателем товара. Уменьшение мерцания достигается увеличением частоты регенерации (обновления) экрана на каждом уровне разрешения. Стандарт VESA рекомендует использовать частоту не менее 85 Гц
Под муаром понимаются искажения, воспринимаемые глазом как «волокнистость» и волнообразные разводы изображения, вызванные неправильным взаимодействием теневой маски и сканирующего луча. Фокус и муар являются взаимосвязанными показателями мониторов на базе ЭЛТ. Так, муар должен допускаться в некоторой мере для обеспечения хорошего фокуса
Дрожание изображения возникает вследствие высокочастотных вибраций отверстий маски монитора, вызванных как взаимовлиянием сети, сигналов видео, смещения, блока управления микропроцессорными цепями, так и неправильной организацией заземления. Термин «дрожание” относится к колебаниям с частотами выше 30 Гц. При частотах от 1 до 30 Гц чаще употребляют термин «плавание”, а ниже 1 Гц — «дрейф”. Дрожание в той или иной степени свойственно всем мониторам. Хотя незначительное дрожание может остаться для пользователя незаметным, оно все же вызывает утомление глаз и должно быть отрегулировано. В части 3 ISO 9241 (Предписания по эргономике) допускается диагональное отклонение точки не более 0,1 мм
Источник: vuzlit.com