Мультиметр – незаменимая и просто необходимая вещь радиолюбителя, без него, как без рук, он нам позволяет измерить напряжение, ток, сопротивление и номиналы радиодеталей, узнать параметры транзисторов с диодами, помогает в прозвонке цепей и так далее. Существует много видов мультиметров, от самых дешевых и простых, до дорогих и универсальных.
Отличаются они качеством, точностью измерений и, конечно же, функциями. Мультиметры бывают и поддельными, отличить подделку от оригинала не очень то просто, китайцы часто подделывают мультиметры известных фирм. Говорить о качестве, а тем более о точности и сроке службы таких приборов не стоит.
Для работы нам понадобится самый обычный мультиметр, цифровой или стрелочный, я буду показывать примеры на цифровом мультиметре модели DT838B. Данные мультиметры широко распространены, модификаций у них много и продаются почти на каждом углу.
Измерение напряжения Очень часто, точнее сказать практически всегда приходится сталкиваться с измерением напряжений и тока в цепи. Как измерять напряжение я думаю понятно, для этого переключаем переключатель в положение AC – если вам нужно измерить переменное напряжение: или DC – если постоянное: Помните, постоянное напряжение идет после диодных мостов, переменное бывает на выводах трансформатора и в сети 220 вольт.
Как уменьшить ток подсветки!?!?! BBK 32LEM 1019T2C
С пределами измерения тоже все просто, например, если вам нужно измерить постоянное напряжение, которое не выходит за пределы 20 вольт, вы стрелку переключателя ставите на «20», затем просто прикасаетесь щупами прибора к плюсу и минусу схемы, и на дисплее отобразится информация. Если вы заранее не знаете, какое напряжение может быть на участке цепи, стрелку переключателя ставьте на 200, и измеряйте.
При измерении больших напряжение не касайтесь металлических частей и самого щупа прибора. Еще небольшой совет, прежде чем измерять напряжение, поразмышляйте немного, какая это цепь, какое примерное напряжение в этой цепи может быть? Почитайте надписи на конденсаторах, на какое они напряжение, посмотрите маркировку и характеристики диодов.
Измерение тока Измерение тока, а именно измерение больших токов, достаточно опасный процесс, с осторожностью стоит к этому относиться, будьте предельно внимательны и не допускайте случайных коротких замыканий, иначе ваша схема может выйти из строя, и вы сами тоже, можете пострадать! Для того, что бы измерить ток, Вам нужно хорошо представлять, что это за параметр и какими свойствами обладает.
Рассмотрим на примере вентилятора от видеокарты компьютера, можете взять любой другой вентилятор, какой у вас есть, посмотрим, сколько он «кушает». Сначала вам нужно определить, в каких пределах будете измерять ток. Если не знаете, то нужно начинать с максимального предела.
EAX65391401 уменьшить ток подсветки. Ремонт подсветки телевизора LG 32LB628U.
Для того, чтобы понять как измерить потребляемый ток этого вентилятора (да и в прочем любой другой схемы), взгляните на схему ниже: Из этого рисунка должно быть понятно, что амперметр (мультиметр) подключается последовательно одной из цепи питания. Для того чтобы измерить ток, переключаете стрелку мультиметра в положение A (измерение тока), в некоторых мультиметрах просто пишут 10А. Потом, не забудьте перевоткнуть плюсовой разъем щупа на мультиметре в верхнее гнездо, так, как это показано ниже на фото. Щуп в данное гнездо вставляется только при измерении тока, во всех остальных случаях щупы нужно вставлять в два нижних гнезда. При измерении тока полярность подключения щупов значения не имеет.
Подключите один из щупов мультиметра к одному из проводов вентилятора, второй щуп мультиметра идет у нас на питание, так же как и второй провод вентилятора, только при подключении соблюдайте полярность включения вентилятора, плюсовой вывод к плюсу, минус к минусу, должно получиться у Вас нечто похожее: Потребляемый ток отобразится на дисплее мультиметра:Большие токи не измеряйте дольше 5-10 секунд, после измерений не забудьте плюсовой щуп переключить обратно в среднее гнездо. Измерение сопротивлений Данная функция бывает очень полезна для измерения сопротивлений резисторов с цветовой маркировкой.
Ставим стрелку переключателя в нужное Вам положение, в зависимости от того, что вы хотите измерить, Омы или килоомы. Как вы уже знаете, килоомы обозначаются буквой К, а Омы – либо буквой R, либо никаких букв после цифр не пишут.
Рассмотрим примеры на резисторах с цветовой маркировкой, таких резисторов в наборе у меня очень много, и очень часто, перед тем как впаивать такой резистор в схему, я проверяю его сопротивление, а вдруг не тот номинал положили в пакетик, и такое бывает. Если потом схема не заработает, ни за что и не догадаешься что дело именно в этом резисторе.
Примеры измеренных сопротивлений ниже. Резистор 10 кОм. Резистор 200 кОм.
Кроме того, очень полезно измерять сопротивление входных цепей питания устройств, если оно в районе нескольких Ом, значит возможно где-то ошибка, неправильно запаяли какой то элемент, проверьте транзисторы и диоды, дорожки, если вы их сами рисовали. Во время измерений ни один резистор не пострадал, и каждый попал обратно в свой пакетик.
Прозвонка радиодеталей Некоторые мультиметры имеют функцию прозвонки цепей, на мультиметре это положение обычно обозначается значком диода с сигналом, или значок сигнала отдельно. Граница срабатывания сигнала составляет 50-70 Ом. Т.е. если сопротивление цепи меньше 50-70 Ом, прибор запищит.
Удобно прозванивать не только цепи, но и радиодетали, например катушки на обрыв или КЗ, переключатели, термостаты и пр… Если есть контакт, то запищит динамик в мультиметре. Что касается дросселей и первичных/вторичных обмоток трансформаторов, сигнализатором они как правило прозваниваются редко, лучше всего, обмотки проверять омметром (ставите стрелку переключателя на измерение сопротивлений, в положение 200, а лучше 2000 Ом), если сопротивление подозрительно маленькое, возможно имеет место межвитковое замыкание, трансформатор в лучшем случае будет греться и выдавать меньшее напряжение.
Ниже пример, измерил сопротивление первичной и вторичной обмотки 20 ваттного трансформатора, вторичка на 2х6 вольт. Вторичная обмотка: 1,5 Ом. Первичная: 101,5 Ом.
Как уже говорил, удобно прозванивать разные выключатели, кнопки, проверять на замыкание они или на размыкание, какие вывода с какими связаны и так далее. Прозвонка термостата, после прозвонки выяснилось, что он на размыкание:
Переключатель прибора можно поставить как на измерение сопротивлений, так и на «пищалку».Также, очень удобно прозванивать диоды, узнать где у него анод, а где катод: Если диод подключен не правильно, то на дисплее будут нули. Можно прозвонить транзисторы и убедиться что он возможно рабочий: Прозванивать нужно базу с коллектором, и базу с эмиттером.
У транзисторов можно проверить коэффициент усиления, для этого их вставляем в специальный штыревой разъем, при этом не спутайте структуру и цоколевку транзистора. Стрелку переключателя ставим в положение hFE. В этом режиме мы проверяем способность транзистора усиливать входной сигнал.
Два отдельно взятых и при этом полностью одинаковых транзистора могут иметь разное значение этого коэффициента. Как уже говорилось, разные мультиметры имеют разные функции, дорогие имеют больше функций.
Некоторые подобные мультиметры имеют функцию измерения температуры, к ним прилагается дополнительный шнур с термопарой, данная функция полезна чтобы узнать температуру нагрева радиаторов, радиодеталей и т.п. Мультиметры как правило очень надежны, и спалить их достаточно трудно, но можно. Например если прикоснуться щупами к источнику напряжения в несколько киловольт, микропроцессор мультиметра после этого выйдет из строя, будет сильно греться, и на дисплее будут отображаться непонятные символы. Точных Вам измерений, пока!
Теги:
Романов А.С. Опубликована: 2012 г. 0 2
Вознаградить Я собрал 0 3
Оценить статью
- Техническая грамотность
Оценить Сбросить
Средний балл статьи: 4.9 Проголосовало: 3 чел.
Источник: cxem.net
Ремонт недорогого мультиметра DT-830B, DT-832
История с ремонтом данного недорогого мультиметра начального уровня началась с того, что случайно сжег свой старый мультиметр ALDA DT-830B, который был куплен в далеком 1995 году на первые студенческие деньги.
Можно было не морочить голову и купить аналогичный новодел, или вообще обойтись без DT-830B, так как в хозяйстве есть более современный мультиметр (несколько были проданы при переездах, оставлен необходимый минимум).
Но:
— в первую очередь — аппарат дорог как память;
— во вторую — он собран на базе полноформатной АЦП микросхемы ICL7106 в DIP корпусе (и двух десятков резисторов с конденсаторами), которую не дорого и не сложно заменить;
— в третью — привычка, по факту 90+% времени пользуюсь именно DT-830B в паре в транзистор тестером.
Сколько всего было сломано и отремонтировано с использованием данного мультиметра, первые шаги в изучении электроники, первые мультивибраторы, десяток усилителей, фильтров и т.д и т.п. были собраны благодаря ему. А итог все равно как у всех, но не в год покупки, а спустя 27 лет — можно сказать измерил напряжение в сети в режиме измерения сопротивлений. Еще и подождал до появления искр, запаха и волшебного дыма. Направление стрелочки на ручке выбора диапазонов не рассмотрел…
Ремонт такого рода мультиметров максимально прост, и сводится к замене сгоревших резисторов, восстановлению дорожек, и если не помогло — замене микросхемы АЦП.
В моем случае сгорели 3 резистора (2к Ом, 100 Ом и 900 Ом), и микросхема.
В качестве замены микросхемы выбирал что было в наличии и стоило дешевле нового прибора.
Выбор был следующим:
ICL7106 — оригинал разных производителей (высокая цена)
GC7106AQ — китайский клон (доступная цена)
К572ПВ5 — отечественный аналог (новые с хранения), по цене чуть дороже китайской и чуть дешевле оригинала, поэтому выбор остановил на них
На всякий случай записал номиналы, так как в моем случае резисторы обуглились до не читаемого состояния, и пришлось искать номиналы по подобным схемам:
Микросхему установил на панель, собранную из разношерстных панелей.
Плату немного повело от температурного воздействия, пришлось нагревать паяльным феном и выравнивать, иначе резинка с контактами дисплея не полностью прилегала, и не все сегменты дисплея горели. В итоге добился идеального горизонта без использования подкладок. Обычно об этом ремонтники умалчивают.
Фото итогового результата:
Пока ехала пара микросхем, ради любопытства за копейки заказал сгоревший новодельный мультиметр.
Выбирал наугад, пытался ориентироваться на маркировку на корпусе, но не угадал. Приехал обычный новодел, исполнений которого огромное количество.
Исходил из того, что в крайнем случае применю вторую микросхему, которую заказал в запас, да и интересно было распаять микросхему в PDIP40 корпусе на место PLCC44.
По итогу, новодельный мультиметр порадовал следующим:
— приехал копаный некомплект, утеряны шарики и одна из пружин, сколота часть корпуса конденсатора;
— сгоревшими были резисторы 2 кОм и 900 Ом;
— видимо был ударником, так как резисторная сборка 4х1 МОм была в режиме 3х1 МОм, и пришлось допаять отдельно 1 резистор на 1 МОм (иначе звук в режиме прозвонки долго затухал);
— контакты экрана и резинки долго вычищал и вымывал, пока добился идеального контакта и отображения всех сегментов.
Зато микросхема пережила измерение напряжения в сети в режиме измерения сопротивлений. Почему так решил — замененный 2кОм резистор отвечал именно за диапазон измерения сопротивлений, проверил до замены.
Плата на новодельном мультиметре гораздо тоньше, ощущается как бумага.
И не советую без цели лезть к этим экранам, иначе намучаетесь с обратной сборкой.
Также записал номиналы для себя и таких же как я:
Практически итоговый результат (позже был удален подстроечный резистор и резистор на 910 Ом, и вместо них из двух десятков 1 кОм резисторов подобран и запаян резистор на 1007 Ом):
Результаты тестирования приводить не буду, так как калибровал по показаниям цифрового регулируемого понижающего модуля B3603 и мультиметра ZOTEK ZT-301.
Оба мультиметра откалибровал так, чтобы показания идеально совпадали.
Особой точности не добивался по причине того, что позже показания все равно уплывут, так как мультиметр начинает завышать показания в процессе проседания напряжения на питающей 9В батарее.
Надеюсь кто-нибудь по моим пятам ударится в ностальгию и восстановит свой старый, еще «крепко» собранный, мультиметр, на большее не рассчитываю. Да, я уверен, что многие их не выбросили, и хранят где-нибудь глубоко в шкафу 🙂
Спасибо за внимание!
Планирую купить +16 Добавить в избранное Обзор понравился +110 +178
- ALDA,
- ALDA DT-830B,
- мультиметры и тестеры
- 13 сентября 2022, 18:43
- автор: ghostpvv
- просмотры: 19368
Источник: mysku.club
Проверка диодов мультиметром
И для любителей, и для профессионалов электроники очень важным умением является способность определить полярность (где катод, а где анод) и работоспособность диода. Так как мы знаем, что диод, по сути, является не более, чем односторонним клапаном для электричества, то вероятно, мы можем проверить его однонаправленный характер с помощью омметра, измеряющего сопротивление по постоянному току (питающегося от батареи), как показано на рисунке ниже. При подключении диода одним способом мультиметр должен показать очень низкое сопротивление на рисунке (a). При подключении диода другим способом мультиметр должен показать очень большое сопротивление на рисунке (b) (некоторые модели цифровых мультиметров в этом случае показывают «OL»).
Конечно, чтобы определить, какое вывод диода является катодом, а какой – анодом, вы должны точно знать, какой вывод мультиметра является положительным (+), а какой – отрицательным (-), когда на нем выбран режим «сопротивление» или «Ω». В большинстве цифровых мультиметров, которые я видел, красный вывод используется, как положительный, а черный, как отрицательный, в соответствии с соглашением о цветовой маркировке электроники.
Одна из проблем использования омметра для проверки диода заключается в том, что мы имеем только качественное значение, а не количественное. Другими словами, омметр говорит вам, только в каком направлении диод проводит ток; полученное при измерении низкое значение сопротивления бесполезно. Если омметр показывает значение «1,73 ома» при прямом смещении диода, то число 1,7 Ом не представляет для нас, как для техников или разработчиков схем, никакой реально полезной количественной оценки. Оно не представляет собой ни прямое падение напряжения, ни величину сопротивления материала полупроводника самого диода; это число скорее зависит от обеих величин и будет изменяться в зависимости от конкретного омметра, используемого для измерения.
По этой причини, некоторые производители цифровых мультиметров оснащают свои измерительные приборы специальной функцией «проверка диода», которая показывает реальное прямое падение напряжения на диоде в вольтах, а не значение «сопротивления» в омах. Эти измерительные приборы работают, пропуская через диод небольшой ток и измеряя падение напряжения между двумя измерительными щупами (рисунок ниже).
Показание прямого напряжения, полученное таким образом с помощью мультиметра обычно меньше, чем «нормальное» падение в 0,7 вольта для кремниевых диодов и 0,3 вольта для германиевых диодов, так как ток, обеспечиваемый измерительным прибором, довольно мал. Если у вас нет мультиметра с функцией проверки диодов, или вы хотели бы измерить прямое падение напряжения на диоде при другом токе, то можно собрать схему из батареи, резистора и вольтметра.
Подключение диода в этой тестовой схеме в обратном направлении просто приведет к тому, что вольтметр покажет полное напряжение батареи.
Если эта схема была разработана для обеспечения протекания через диод тока постоянной (или почти) величины, несмотря на изменения прямого падения напряжения, то она может быть использована в качестве основы для инструмента, измеряющего температуру: измеренное на диоде напряжение будет обратно пропорционально температуре перехода диода. Конечно, ток через диод должен быть минимален, чтобы самонагревания (значительного количества рассеиваемой диодом мощности), которое могло бы помешать измерению температуры.
Помните, что некоторые цифровые мультиметры, оснащенные функцией «проверка диода», при работе в обычном режиме «сопротивление» (Ω) могут выдавать очень низкое тестовое напряжение (менее 0,3 вольт), слишком низкое для полного схлопывания (сжатия) обедненной области PN перехода. Суть в том, что тестирования полупроводниковых приборов здесь должна использоваться функция «проверка диода», а функция «сопротивления» – для всего остального. Использование очень низкого тестового напряжения для измерения сопротивления облегчает процесс измерения сопротивления неполупроводниковых компонентов, подключенных к полупроводниковым компонентам, так как переходы полупроводникового компонента не будут смещены такими низкими напряжениями в прямом направлении.
Рассмотрим пример резистора и диода, соединенных параллельно и припаянных к печатной плате. Как правило, перед измерением сопротивления резистора необходимо было бы выпаять его из схемы (отсоединить резистор от остальных компонентов), в противном случае любые параллельно подключенные компоненты будут влиять на полученные показания. При использовании мультиметра, который выдает на щупы очень низкое тестовое напряжение в режиме «сопротивление», на PN переход диода не будет подано напряжение, достаточное для того, чтобы он был смещен в прямом направлении, и, следовательно, диод будет пропускать незначительный ток. Следовательно, измерительный прибор «видит» диод, как разрыв, и показывает сопротивление только резистора (рисунок ниже).
Если использовать такой омметр для проверки диода, он покажет очень высокое сопротивление (много мегаом), даже если подключить диод в «правильном» (для прямого смещения) направлении (рисунок ниже).
Величина обратного напряжения диода измеряется не так легко, так как превышение обратного напряжения на обычном диоде приводит к его разрушению. Хотя существуют специальные типы диодов, разработанные для «пробоя» в режиме обратного смещения без повреждения диода (так называемые стабилитроны), которые тестируются в той же схеме источник/резистор/вольтметр при условии, что источник напряжения обеспечивает величину напряжения, достаточную для перехода диода в область пробоя. Более подробную информацию об этом читайте в одной из следующих статей этой главы.
Подведем итоги
- Омметр может быть использован для качественной оценки работоспособности диода. При подключении диода в одном направлении должно получено низкое сопротивление, а подключении в другом направлении – очень высокое сопротивление. При использовании для этой цели омметра, убедитесь, что знаете, какой из тестовых щупов положительный, а какой отрицательный!
- Некоторые мультиметры имеют функцию «проверка диода», которая отображает фактическое прямое напряжение диода, когда он проводит ток. Такие измерительные приборы обычно показывают слегка заниженное значение прямого напряжения, по сравнению с «номинальным» значением, из-за очень маленькой величины тока, используемой для проверки.
Источник: radioprog.ru