Как работает pfc в блоке питания телевизора

PFC — это Power Factor Correction, что переводится с англ. как «Коррекция фактора мощности», встречается также название «Компенсация реактивной мощности».
Применительно к импульсным блокам питания этот термин означает наличие в блоке питания соответствующего набора схемотехнических элементов, который также принято называть «PFC». Эти устройства предназначены для снижения потребляемой блоком питания реактивной мощности. Источники питания без PFC создают мощные импульсные помехи по электросети для параллельно включенных электроприборов.
Для количественной оценки внесенных искажений и помех существует коэффициент мощности (КМ или Power Factor). Собственно фактором (или коэффициентом мощности) называется отношение активной мощности (мощности, потребляемой блоком питания безвозвратно) к полной, т.е. к векторной сумме активной и реактивной мощностей. По сути коэффициент мощности (не путать с КПД!) есть отношение полезной и полученной мощностей, и чем он ближе к единице – тем лучше.

PFC в импульсных блоках питания. Активный PFC. Пассивный PFC

PFC

PFC

Разновидности PFC

PFC бывает двух разновидностей – пассивный и активный.
Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC. Пассивные PFC делают на реактивном элементе — дросселе. К сожалению, для получения приемлемой эффективности его размеры получаются соизмеримые с размерами трансформаторного варианта построения этого блока питания, что экономически не выгодно.

Большие геометрические размеры дросселя получаются потому, что он должен работать на частоте 50Hz (точнее 100Hz из-за удвоения частоты после выпрямления) и он никак не может быть меньше соответствующего трансформатора на такую же мощность. Довольно часто в БП под вывеской «пассивный PFC» скрывается дроссель весьма малых размеров. Точнее сказать, там не может быть дросселя достаточных размеров из-за весьма ограниченного места в корпусе данного БП. Подобный декоративный PFC может испортить динамические характеристики БП или стать причиной неустойчивой работы.

Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
Помимо того, что активный PFC обеспечивает близкий к идеальному коэффициент мощности, так еще, в отличие от пассивного, он улучшает работу блока питания — он дополнительно стабилизирует входное напряжение основного стабилизатора блока – блок становится заметно менее чувствительным к пониженному сетевому напряжению, также при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110. 230В, не требующие ручного переключения напряжения сети.
Также использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения – в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя, эффективность использования которых увеличивается более чем в два раза. Ещё одним преимуществом использования активного PFC является более низкий уровень высокочастотных помех на выходных линиях, т.е. такие БП рекомендуются для использования в ПК с периферией, предназначенной для работы с аналоговым аудио/видео материалом.

Еще по теме:  Как установить скин на телевизор LG

Ремонт LG 32LH3000 не включается. Ремонт PFC на L6562

Международные организации и PFC

Источник: www.altie.ru

xTechx.ru

Active PFC — активная коррекция коэффициента (фактора) мощности. Сравнение с пассивной PFC.

APFC (Active Power Factor Correction, Active PFC, APFC) – активный модуль коррекции коэффициента мощности.

Состоит из катушки индуктивности, силового транзистора, диода, собственного конденсатора и иногда собственного входящего фильтра. Управляющая электроника обычно располагается на отдельной плате.

К дросселю (к земле) подключен силовой транзистор, который при включении замыкает дроссель с землёй, заставляя дроссель накапливать энергию, которая впоследствии передаётся в конденсатор через диод, размыкающий конденсатор при соединении транзистора с землёй, предотвращая конденсатор от случайной разрядки. Этим процессом управляет специальный контроллёр, который максимально приближает синусоиду получаемой мощности к результирующему коэффициенту мощности.

Эффективность в среднем достигает 0.95 -0.98 при нагрузке выше половины мощности импульсного источника питания, и уменьшается с уменьшением нагрузки достигая 0.75 – уровня БП с пассивным PFC (Passive PFC).

Из плюсов активной PFC над пассивной PFC в компьютерных блоках питания можно отметить:

  • Лучшая стабильность при кратковременных скачках напряжения (доли секунды), когда другой БП выключился бы.
  • Возможность работать в большом диапазоне входящего напряжения ~ 100 – 240 V . Это делает блоки более стабильными и надёжными, а также позволяет им быть более универсальными для любых стандартов питающей сети принятыми в различных странах.
  • Выходное питания практически лишено сетевых помех, что благоприятно сказывается работе высокоточной аудиовидео и вычислительной техники.
  • В некоторых случаях уменьшается нагрев компонентов, идущих за APFC.

Для БП с Active PFC, не стоит использовать дешёвые ИБП со ступенчатым выходным сигналом, так как это может вывести из строя БП, сам ИБП, либо к сбоям в работе компьютера. Чтобы этого не происходило, для блоков питания с Active PFC стоит подбирать ИБП с синусоидальным выходным сигналом.

Источник: www.xtechx.ru

Принцип работы блока питания 3-го поколения

Все компоненты данного блока питания расположены на одной плате. Внешний вид платы представлен на рисунке 2.

Данный модуль функционально делится на несколько узлов:

  • — Power Factor Correction (PFC) или корректор коэффициента мощности (ККМ); — источник питания «дежурный»;
  • — источник питания «рабочий».

Рассмотрим каждый узел в отдельности.

Корректор коэффициента мощности.

Этот узел устраняет гармонические составляющие тока во входной цепи, которые воспроизводятся выпрямительными диодами вместе с электролитическим конденсатором фильтра сетевого выпрямителя импульсного источника питания (ИИП). Эти гармонические составляющие негативно влияют на электросеть, поэтому производителей бытовой техники обязывают оборудовать свою продукцию устройствами PFС.

Еще по теме:  Список литературы по телевизору

В зависимости от мощности, данные устройства бывают активными и пассивными. В рассматриваемом нами блоке питания BN44-00192A, устройство PFС является активным. На рисунке 1 здесь PFС включается коммутацией напряжения М_Vсс на 8 выводе контроллера ICP801S одновременно с «рабочим» источником питания.

Когда включен дежурный режим активный PFС не работает, так как напряжение +311В с диодного моста через диод DP801 поступает на конденсатор фильтра. Для фильтрации гармоник при малых нагрузках вполне хватает установленных входных фильтров. По сути, эти фильтры являются пассивными PFС.

Источник питания «дежурный» Дежурный источник питания представляет собой схему обратноходового преобразователя, который управляется ШИМ-контроллером ICB801S. Преобразователем, работающим на фиксированной частоте 55…67 кГц, формируется на выходе стабилизированное напряжение 5,2В и имеющее в нагрузке ток до 0,6А.

Это напряжение обеспечивает питание процессора управления в дежурном режиме, питание микросхем ШИМ основного источника, а также питание PFС в рабочем режиме. Из дежурного в рабочий режим телевизор переходит путём формирования напряжения 5,2В посредством транзисторного ключа QB802. Напряжение питания М_Vcc, при этом, поступает на ШИМ-контроллеры ICP801S и ICM801.

Одновременно с этим запускается PFС и основной источник питания. Источник питания «рабочий» Рабочий источник питания реализован по схеме прямоходового преобразователя, который выполнен по полумостовой схеме. Данный источник на выходе формирует стабилизированные напряжения: 24В (питание инвертора подсветки), 13В, 12В и 5,3В для питания майна. Типовые неисправности. Теперь рассмотрим наиболее популярные дефекты данного блока питания.

К таковым относятся: — неисправности конденсаторов вторичных цепей; — образование кольцевых трещин (холодная пайка) на контактах транзисторов. К менее популярным неисправностям относятся следующие: — выход из строя ключевых транзисторов QM801, QM802; — обрыв резистора RM801 (это может произойти из-за неисправных конденсаторов во вторичных цепях); — перегрев ключевых транзисторов (это происходит из-за неисправности конденсатора СМ801 по причине изменения частоты работы преобразователя).

Cхем большинства телевизоров с ЖК экраном: Включениие LCD телевизора в сеть 220 В запускает импульсный блок питания, который начинает выдавать на аналогово-цифровой модуль SLT стабилизированные напряжения как правило таких значений: 3.3 В, 5 В, 12 В и 33 В. В модуле SLT процессор проводит самодиагностику, на предмет выявления неисправностей, и когда тест самодиагностики пройден, телевизор начинает работать в режиме STANDBY. Так он находится режиме энергосбережения, при котором остается запитанной только минимально необходимый набор элементов схемы.

При поступлении команды с пульта дистанционного управления на датчик IR, а далее с датчика IR, детектированного кода команды на вход видеопроцессора, или при поступлении команды с клавиатуры, расположенной на передней панели телевизора на вход видеопроцессора, по шине I2C с видеопроцессора поступает команда о включении. Модуль SLT, предназначен для аналогово цифровой обработки видео и звукового сигнала, обработки сигналов с пульта дистанционного управления, управления включением и выключением вспомогательных напряжений, управления яркостью свечения ламп LCD матрицы, управления звука. Аналогово цифровой модуль содержит видео процессор, коммутатор видео сигналов, звуковой процессор, коммутатор синхросигналов, коммутатор сигналов RGB, формирователь строчных и кадровых синхроимпульсов, тюнер и фильтры на ПАВ. LCD матрица имеет цифровой вход с интерфейсом LVDS или TTL, в зависимости от её модели и лампы подсветки матрицы, от которых идут высоковольтные провода к питающему преобразователю.

Еще по теме:  Плюсы и минусы новостей по телевизору

Включившийся процессор начинает обмен информации с матрицей по интерфейсу LVDS или TTL, в зависимости от типа LCD матрицы. Если телевизор включен в режим TV, процессор посылает в блок Tuner по шине I2C код, соответствующий частоте нужного канала.

Тюнер настраивается на требуемую частоту, на его выходе появляется сигнал промежуточной частоты выбранного канала. Затем сигнал промежуточной частоты от тюнера проходит через фильтры на ПАВ, для разделения промежуточной частоты видео и промежуточной частоты звука которые поступают на видео процессор, в котором и происходит преобразование сигнала промежуточной частоты видео в сигналы цветов RGB. В TV режиме сигналы RGB поступают через коммутатор на вход процессора.

Видеопроцессор выделяет из видео промежуточной частоты строчные и кадровые синхроимпульсы, которые поступают на формирователи синхроимпульсов HF и VF — горизонтальной и вертикальной развёртки. После формирователей синхроимпульсы поступают на коммутатор. Процессор преобразовывает входные сигналы RGB в цифровой код и передает их по интерфейсу LVDS или ТТL на матрицу LCD, которая уже отображает видео. Звуковой сигнал ПЧ поступает на вход звукового процессора, а уже с его выходов сигнал звука правого и левого каналов поступает на входы УНЧ.

Аналого-цифровой модуль SLT имеет входы внешних аудио и видеосигналов. При включении телевизора в режим видео, видеосигналы переключаются коммутатором и подаются на вход CVBS/Y и вход C видеопроцессора, а звуковые сигналы правого и левого каналов, подаются на соответствующие входы звукового процессора. При включении режима RGB, сигналы RGB поступают сразу на входы видеопроцессора. При выборе режима VGA сигналы RGB с разъема VGA коммутатором переключаются на входы RGB процессора.

Горизонтальные и вертикальные синхроимпульсы с разъема VGA коммутатором переключаются на соответствующие входы процессора и происходит декодирование сигнала VGA который передается матрице. При включении видеовхода в режим DVI цифровые сигналы со входа DVI поступают прямо на соответствующие входы процессора. Он декодирует данный сигнал DVI и передает его матрице.

Источник: studwood.net

Оцените статью
Добавить комментарий