принцип работы телевизора радиоканал телевизора модуль разверток источник питания простейшие неисправности
КАК РАБОТАЕТ ТЕЛЕВИЗОР?
На этой странице попытаемся разобраться в работе телевизора. Взгляните на структурную схему:
Это структурная схема телевизионного приемника. По этой схеме построены практически все телевизоры.
Сигнал из антенны Ant1 поступает на вход селектора каналов. Обязанности селектора — выбор определенной (рабочей частоты) приема теле сигнала. Селектор состоит из смесителя и гетеродина (как в супергетеродинных приемниках). Он преобразует радио частоту телевизионного сигнала в промежуточную.
Выделенный селектором сигнал промежуточной частоты поступает на Усилитель Промежуточной Частоты Изображения (УПЧИ). УПЧИ кроме всего содержит селектор синхроимпульсов (это такие импульсы, которые передаются телевизионным центром совместно с сигналом передачи и используются для синхронизации частоты генераторов разверток).
Синхроимпульсы поступают на задающие генераторы Кадровой и Строчной разверток. Без этих импульсов невозможно было бы нормально просматривать передачу (изображение постоянно «Дергалось и искажалось»). Блок разверток содержит модули Строчной и Кадровой развертки. Кадровая развертка служит для развертывания изображения по вертикали.
Как работает аналоговый телевизор. Видеосигнал. Видеосистемы.
Стандартная частота кадровой развертки равна 50 герцам. Модуль строчной развертки служит для разворачивания изображения по горизонтали. Стандартная частота строчной развертки равна 15625 герц. Дополнительно модуль строчной развертки служит для получения высокого (до 25-30 Киловольт в цветных телевизорах) напряжения для питания ускоряющего электрода кинескопа. Помимо модулей кадровой и строчной разверток, блок разверток содержит модуль стабилизации размеров изображения, также импульсы строчной развертки используются для получения Ключевой АРУ (Автоматической Регулировки Усиления в блоках радиоканала).
С выхода УПЧИ усиленный сигнал видеочастоты поступает на Видео Усилитель (ВУ), с выхода которого поступает на модулятор трубки (Кинескопа). Также видео сигнал используется для передачи звука. Видеосигнал поступает на Усилитель Промежуточной Частоты Звука (УПЧЗ).
УПЧЗ выделяет из видеосигнала звуковую частоту, которая поступает на Усилитель Звуковой Частоты (УЗЧ) и далее на громкоговоритель. Несведущий спросит «А как же так можно получить из одного сигнала сразу два — и видео и звуковой сигнал?». А дело в том, что еще на телецентре эти сигнала смешиваются особым образом. Видеосигнал имеет Амплитудную, а звуковой сигнал — Частотную модуляции.
В УПЧИ сначала происходит детектирование Амплитудно Модулированного сигнала видеочастоты. Стандартная частота видеосигнала имеет полосу пропускания от нескольких килогерц до 6,5 мегагерца. Верхняя частота этого сигнала используется для передачи звука. Частота 6,5 Мегагерц выделяется в УПЧЗ полосовыми контурами и далее детектируется частотным детектором (как в радиоприемнике УКВ диапазона).
На горловине кинескопа установлена Отклоняющая Система (ОС), которая содержит кадровые и строчные катушки. Эти катушки используются для отклонения электронного луча для получения равномерного свечения экрана (растра). На модулятор кинескопа подается напряжение видеосигнала.
Это напряжение изменяет интенсивность луча, а значит, и яркость свечения кинескопа (лицевая часть кинескопа покрыта изнутри слоем люминофора, который преобразует энергию электронного луча в видимое свечение). В простейшем случае (черно-белый телевизор) люминофор имеет белое свечение.
В цветных телевизорах экран кинескопа покрыт уже тремя различными люминофорами, благодаря чему удалось получить цветное изображение. Также цветной кинескоп содержит не один, а три катода, и, соответственно, три электронные пушки. Каждый луч «отвечает» за свой цвет свечения экрана.
Для того, чтобы можно было направить луч именно на свой участок люминофора, в конструкции цветного кинескопа имеется маска (это такая металлическая пластина с большим количеством отверстий). Катоды кинескопа расположены в форме треугольника, точно в такой же форме расположены и «кусочки» цветного люминофора на экране кинескопа. Такое расположение называется «Триада».
По этой конструкции строились первые цветные кинескопы. В настоящее время больше распространена «щелевая» конструкция кинескопов. Катоды в такой конструкции размещены уже в ряд. Точно так же расположены и отверстия маски кинескопа, а также цветные слои люминофора. Щелевая конструкция кинескопа позволяет получить изображение более высокого качества (яркость и контраст).
На горловине цветного кинескопа также имеются магниты (постоянные и катушки) сведения лучей. Эти магниты служат для правильного расположения лучей от цветных пушек (для правильной передачи цветов необходимо условие, при котором, например, красный луч попадает точно на свой участок люминофора).
В дальнейшем мы с вами рассмотрим структурные и принципиальные схемы узлов телевизора на примере телевизионного приемника «Рекорд», способы отыскания и устранения простейших неисправностей.
Источник: radiocon-net.narod.ru
Устройство и принцип работы телевизора
Телевизионный приемник — устройство для приема телевизионных сигналов и их преобразования в визуально-звуковые образы.
Телевизор состоит из устройства отображения визуальной информации (кинескопа, жидкокристаллической или плазменной панели); шасси — платы, которая содержит основные электронные блоки телевизора (телетюнер, декодер с усилителем аудио- и видеосигналов и др.), корпуса с расположенными на нем разъемами, кнопками управления и громкоговорителями.
Телевизионные радиосигналы, принятые антенной, подаются на радиочастотный (антенный) вход телевизора. Далее они поступают в радиочастотный модуль, называемый также тюнером, где из них выделяется и усиливается сигнал именно того канала, на который в этот момент настроен телевизор. В тюнере также происходит преобразование радиочастотного сигнала в низкочастотные видео- и аудиосигналы.
Видеосигнал после усиления подается в модуль цветности (только в телевизорах цветного изображения), содержащий декодер цветности, а затем на устройство отображения визуальной информации. Декодер цветности предназначен для декодирования сигналов цветности той или иной системы (PAL, SEC AM, NTSC).
Аудиосоставляющая подается в канал звукового сопровождения, где происходит выделение звукового сигнала и его необходимое усиление. После усиления аудиосигнал подается на громкоговоритель (динамик), преобразующий электрический сигнал в слышимый звук. Если телевизор рассчитан на воспроизведение стерео или многоканального звука, в составе его канала звукового сопровождения имеется соответствующий декодер многоканального звука, который разделяет звуковую составляющую на каналы.
Кинескопы бывают черно-белого изображения и цветного изображения, отличаются они по конструкции.
Экран кинескопа черно-белого изображения изнутри покрыт сплошным слоем люминофора, обладающего свойством светиться белым цветом под воздействием потока электронов. Тонкий электронный луч формируется электронным прожектором, размещенным в горловине кинескопа. Управление электронным лучом осуществляется электромагнитным способом, в результате чего он последовательно в ходе развертки сканирует экран по строкам, вызывая свечение люминофора. Интенсивность (яркость) свечения люминофора в ходе сканирования изменяется в соответствии с электрическим сигналом (видеосигналом), несущим информацию об изображении.
Экран кинескопа цветного изображения изнутри покрыт дискретным слоем люминофоров (в форме кружков или штрихов), светящихся красным, зеленым и синим цветом под действием трех электронных пучков, формируемых тремя электронными прожекторами. Все кинескопы цветного изображения перед экраном имеют цветоделительную теневую маску. Она служит для того, чтобы каждый из трех электронных лучей, одновременно проходящих через многочисленные отверстия маски в ходе сканирования, точно попадал на «свой» люминофор (первый — на зерна люминофора, светящиеся красным цветом, второй — на зерна люминофора, светящиеся зеленым цветом, третий — на зерна люминофора, светящиеся синим цветом).
Каждый электронный луч модулируется «своим» видеосигналом, что соответствует трем составляющим цветного изображения. Поступая на кинескоп, видеосигналы управляют интенсивностью электронных пучков и, следовательно, яркостью свечения люминофоров (красного, зеленого и синего). В результате на экране цветного кинескопа воспроизводятся одновременно 3 одноцветных изображения, создающих в совокупности цветное изображение.
К современным средствам отображения визуальной информации относят жидкокристаллические экраны, проекционные системы, плазменные панели.
В жидкокристаллических телевизорах LCD (Liquid Crystal Display) изображение формируется системой из жидких кристаллов и поляризационых фильтров. С тыльной стороны жидкокристаллическая панель равномерно освещается источником света. Управление ячейками (пикселями) жидких кристаллов осуществляется матрицей электродов, на которую подается управляющее напряжение.
Под действием напряжения жидкие кристаллы разворачиваются, образуя активный поляризатор. При изменении степени поляризации светового потока, изменяется его яркость. Если плоскости поляризации жидкокристаллического пикселя и пассивного поляризационного фильтра отличаются на 90°, то через такую систему свет не проходит.
Цветное изображение получается в результате использования матрицы цветных фильтров, которые выделяют из излучения источника белого цвета три основных цвета, комбинация которых дает возможность воспроизвести любой цвет. Жидкокристаллические телевизоры отличаются компактностью, отсутствием геометрических искажений, вредных электромагнитных излучений, малой массой и потребляемой мощностью, но в то же время имеют малый угол обзора изображения.
В проекционных телевизорах изображение получается в результате оптической проекции на просветный или отражающий экран телевизора яркого светового изображения, создаваемого проектором. Проекторы, используемые в проекционных телевизорах, могут быть построены на электроннолучевых кинескопах, жидкокристаллических матричных полупроводниковых элементах, а также лазерных проекционных трубках.
Основными недостатками проекционных телевизоров являются их громоздкость, высокая потребляемая мощность, низкая четкость увеличенного изображения и узкая зона размещения зрителей перед экраном телевизора.
В основу работы плазменного телевизора положен принцип управления разрядом инертного газа, находящегося в ионизированном состоянии между двумя расположенными на небольшом расстоянии друг от друга плоскопараллельными стеклами ячеистой структуры. Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех пикселей, ответственных, соответственно, за три основных цвета.
Каждый пиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов. Пиксели находятся в точках пересечения прозрачных управляющих электродов, образующих прямоугольную сетку. При разряде в толще инертного газа возбуждается ультрафиолетовое излучение, которое, воздействуя на люминофоры первичных цветов, вызывает их свечение. Изображение последовательно, точка за точкой, по строкам и кадрам развертывается на экране.
Яркость каждого элемента изображения на панели определяется временем его свечения. Если на экране обычного кинескопа свечение каждого люминофорного пятна непрерывно пульсирует с частотой 25 раз в секунду, то на плазменных панелях самые яркие элементы светятся постоянно ровным светом, не мерцая. Плазменные панели выпускается форматом изображения 16:9. Толщина панели размером экрана в 1 м не превышает 10-15 см, что позволяет использовать их в настенном варианте. Надежность плазменных панелей превышает надежность традиционных кинескопов.
Источник: znaytovar.ru
Как устроено телевидение: принципы работы
Телевидение – технология передачи на расстояние изображения и звука от объектов окружающего мира с помощью электромагнитных волн (сигналов) по металлическим проводникам (кабелям), излучением через пространство в радиодиапазоне или в оптическом диапазоне, а также по оптическим волоконным проводникам (кабелям).
- в начальном пункте изображение объекта преобразуется в электрические сигналы последовательно (процесс назван анализом изображения), затем электросигналы передаются по каналу связи в конечный пункт, где в обратном порядке выполняется преобразование последовательности электросигналов в изображение (процесс назван синтезом изображения).
Общая схема современной телевизионной системы
Научные открытия и изобретения, а также многочисленные опытно-конструкторские работы учёных и инженеров в области физики электромагнитных волн и создания технических устройств для их приёма, преобразования и передачи в привели к реализации принципа работы телевидения в современной системе телевизионного вещания, которая в общем виде выглядит следующим образом.
- Телевизионная видеокамера (видеокамера). Служит для получения изображения объекта окружающего мира при помощи объектива на светочувствительную матрицу (фотоматрицу) и преобразование оптического изображения в поток цифровых видеоданных.
- Электронно-вычислительная машина (ЭВМ, компьютер). Служит для обработки и хранения видеоинформации и аудиоинформации в цифровом виде.
- Передатчик. Электронное устройство, которое служит для формирования электромагнитного сигнала для его передачи на расстояние.
Общие сведения о телевизионном сигнале
Телевизионный сигнал в современной системе телевидения передаётся в цифровом виде, то есть является цифровым (дискретным) сигналом – таким образом реализованы принципы работы цифрового ТВ.
Цифровой сигнал (дискретный сигнал) – это сигнал, имеющий точное значение и количество этих значений конечно.
Физически цифровой (дискретный) сигнал имеет 2 или 3 значения. В первом случае цифровой (дискретный) сигнал является двоичным, а во втором – троичным.
В цифровых системах используются двоичные сигналы, в которых положительный потенциал (+) соответствует значению «1». Значению «0» в этом случае физически соответствует низкий уровень напряжения (около 0 В).
При передаче данных в большинстве случаев применяются троичные сигналы со значениями (+), (0), (-). Здесь «1» представляется отсутствием потенциала в канале, тогда как «0» характеризуется положительным (+) или отрицательным (-) импульсом.
В форме троичного цифрового сигнала осуществляется:
- кодирование передаваемых цифровых данных;
- синхронизация работы цифрового канала связи;
- проверка целостности переданных цифровых данных.
Получение и формирование телевизионного изображения
Принцип работы телевидения основан на прямой и обратной функциях преобразования (анализе и синтезе) изображения:
- перед передачей телевизионного изображения в эфир его необходимо преобразовать в последовательные электрические сигналы – выполнить так называемый анализ изображения;
- для того чтобы переданное телевизионное изображение отобразить на экране телевизионного приёмника (телевизора), необходимо преобразовать переданные последовательные электрические сигналы в изображение – выполнить так называемый синтез изображения.
Процесс получения цифрового телевизионного изображения технически реализован следующим образом.
- Изображение объекта внешнего мира в виде светового пучка воспринимается объективом цифровой видеокамеры.
- Далее световой пучок направляется через систему линз и диафрагму видеокамеры на специальную матрицу CCD (аббревиатура от английского Charged Coupled Device).
Матрица CCD (или преобразователь свет-электрический сигнал) – электронное устройство прямоугольной формы, состоящее из светочувствительных элементов, каждый из которых при попадании на него света выполняет функцию преобразования светового сигнала в аналоговый электрический сигнал.
- Затем полученные аналоговые электрические сигналы изображения объекта необходимо преобразовать в цифровые электрические сигналы изображения объекта. Для этого используется аналого-цифровой преобразователь.
Аналого-цифровой преобразователь (АЦП, ADC от английского Analog-to-digital converter) – электронное устройство, выполняющее функцию преобразования аналогового электрического сигнала, поступающего на его вход, в цифровой электрический сигнал, поступающий на его на выход.
- Далее цифровой сигнал обрабатывается процессором цифровой видеокамеры. Через процессор проходят и обрабатываются цифровые потоки сигналов изображения.
- После процессорной обработки цифровое изображение преобразуется конвертером, сжимающим кадры изображения. Сжатие выполняется, чтобы увеличить число хранимых кадров цифровой видеосъёмки.
- Полученное сжатое изображение объекта съёмки записывается на носитель памяти цифровой видеокамеры и может использоваться для передачи на ЭВМ (компьютер) для просмотра, обработки, хранения и дальнейшей передачи в эфир цифрового телевизионного вещания.
Современное телевидение: цифровой формат
Современное телевидение является цифровым. Общее представление о том, как работает цифровое телевидение, можно составить, рассмотрев технологию, включающую два основных этапа:
- преобразование с помощью кода по определённому стандарту видеосигнала и звукового сигнала в стандартизированный цифровой сигнал для передачи по транспортному каналу (каналу связи);
- передачу стандартизированного цифрового сигнала с телевизионным изображением и звуком по транспортному каналу (каналу связи).
Для преобразования (кодирования) и передачи телевизионного сигнала (видеосигнала и звукового сигнала) разработаны специальные стандарты.
В Российской Федерации для эфирного телевизионного вещания в цифровом формате используется стандарт DVB-T2 (аббревиатура от английского термина Digital Video Broadcasting – Second Generation Terrestrial) – стандарт эфирного цифрового телевидения II поколения из группы стандартов DVB, применяемый в странах Европы.
В соответствии со стандартом DVB-T2 в цифровое эфирное телевизионное вещание в России включены следующие бесплатные сервисы и услуги цифрового формата:
- телевизионное изображение стандартной чёткости (SDTV);
- стереозвук;
- субтитры;
- телетекст;
- телегид;
- синхронизация времени и даты с цифровым телевещанием;
- цифровое радио.
Спектральный состав телевизионного сигнала
Стандарт DVB-T2 имеет следующие характеристики, определяющие спектр цифрового телевизионного сигнала.
Модуляция мультиплексирования
Мультиплексирование в телевидении – это передача на одной и той же частоте:
- двух и более ТВ-каналов от различных источников сигнала (телевизионных компаний, телевизионных студий);
- субтитров, телетекста, телегида;
- нескольких разных изображений (видов) одного и того же события (например, при трансляции лыжных соревнований: вид на старте, вид на контрольных отсечках, вид на финише дистанции);
- радиоканалов.
В мультиплексировании (объединении) для передачи эфирного цифрового телевизионного сигнала используется физический радиоканал с определённой пропускной способностью.
Модуляция в эфирном цифровом телевидении – это процесс, при котором исходное низкочастотное электромагнитное колебание – исходная информация: изображение, звук, телегид, телетекст, субтитры – накладывается на предварительно установленное высокочастотное колебание, которое переносит исходную информацию до конечного пользователя.
В цифровом эфирном телевизионном вещании модуляция производится цифровым (дискретным) сигналом. Результат модуляции – перенос сигнала из области низких частот в область высоких частот.
Цифровое эфирное телевизионное вещание в РФ ведётся в 2-х мультиплексах. Каждый мультиплекс включает 10 телевизионных каналов. Мультиплекс представляет собой совокупность (объединение) цифровых телевизионных каналов в одном передаваемом цифровом пакете.
Данный цифровой пакет формируется перед передачей по выделенному каналу, который является транспортным. Затем цифровой пакет (мультиплекс) передаётся в эфир по выделенному каналу (транспортному).
Далее цифровой пакет (мультиплекс) принимается установкой-приёмником – цифровым ресивером или телевизором. После приёма цифровой пакет (мультиплекс) демультиплексируется (разделяется на составляющие).
Источник: nauka.club