Лабораторный блок питания из телевизора своими руками

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Не обязательно покупать дорогой регулируемый источник питания для домашней лаборатории. Его можно просто изготовить самому из имеющегося 12 вольтового импульсного адаптера. Подойдут блоки даже на 9 и 6 Вольт, единственное максимальное напряжение на выходе может немного снизится. Вся переделка схемы блока будет выражаться в небольшой замене компонентов.

Понадобится

Что в схеме нужно заменить?

Разберем корпус блока питания извлечем плату.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Лабораторный блок питания из старого телевизора

Регулировка стабилизации осуществляет по средствам обратной связи через оптрон. В цепи которого имеется стабилитрон который как раз и ответственен за стабильное выходное напряжение 12 В.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Нам необходимо выпаять его и заменить на регулируемый стабилитрон, сделанный на микросхеме-стабилизаторе TL431.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Вот и все, после этого можно будет при помощи переменного резистора выставить любое нужное напряжение.

Как из блока 12 В сделать регулируемый источник питания

[list] Важно! Перед доработкой необходимо проверить выходные конденсаторы. Они должны быть на напряжение 25 В и выше. Если нет, то их необходимо заменить на соответствующее напряжение.

Берем микросхему TL431 и формуем ей контакты.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Впаиваем в плату.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Допаиваем резистор 1 кОм к ближайшему общему проводу. В данной модели пустое место под конденсатор.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Припаиваем провода к потенциометру.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Подключаем его контакты к сехеме.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Устанавливаем все компоненты.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Припаиваем к лепесткам провода идущие с платы и прикручиваем к клеммам.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Тут есть небольшая загвоздка: ампервольтметр не будет работать от напряжение 3 В. Поэтому для него взят еще один блок от маломощного источника.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Устанавливаем платы в корпус.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Закрываем крышку, фиксируем винтами.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Выходное напряжение легко регулируется в пределах 3-25 В. Что, собственного говоря, даже очень хорошо. Проверяем на реальной нагрузке.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Для питания лабораторных самоделок вполне пригодится.

Смотрите видео

  • Как правильно настроить видеокарты на ноутбуке
  • Скрипт подключить ftp как диск
  • Как зайти в настройки видеокарты на windows 10 amd radeon
  • Восстановление данных с жесткого диска дмитров
  • Как узнать device id видеокарты

Источник: kompyutery-programmy.ru

Лабораторный блок питания с регулировкой напряжения и тока

Лабораторный блок питания

просьба собирать её по печатной плате, которую я для вас сделал, чтобы избежать всевозможных ошибок при монтаже.

Печатная плата для схемы

Основа схемы была взята из зарубежного журнала, только я увеличил немного мощности, более детально протестировал её, в итоге от себя добавил дополнительный силовой транзистор, ну и сама плата естественно была модернизирована. Получился отличный блок питания с хорошей нагрузочной способностью, а стабилизация осталась на достаточно высоком уровне.

Лабораторный блок питания с регулировкой напряжения и тока

Основной недостаток линейных схем заключается в их малом КПД, а при конструировании таких источников питания возникают проблемы с охлаждением силовых транзисторов, поэтому очень желательно использовать трансформатор с несколькими обмотками и систему коммутации.

Еще по теме:  Мальчик смотрит телевизор картинка для детей

Наиболее простейший вариант показан на фото.

Схема система коммутации.

Стоит указать то, что сейчас многие отдают предпочтение импульсным лабораторным источником питания у которых кпд может доходить до 90 и более процентов, но больше ценится именно линейные источники питания. Профессиональные линейные блоки питания всегда дополняют узлом коммутации обмоток.

Блок питания может обеспечить на выходе стабильное напряжение от 0 до 35-38 вольт, а выходной ток может доходить до 5-6 ампер.

Измерение нагрузки.

Кстати ток также стабилизирован, то есть выставленное значение тока будет сохраняться при изменениях входного и выходного напряжения, и не зависит от выходной нагрузки.

Выставили ток в 1 ампер и даже при коротком замыкании у вас он будет ограничен одним амперам.

Измерение в 1 ампер.

А вот собственно и модернизированная схема.

Лабораторный блок питания с регулировкой напряжения и тока, схема

Я снизил сопротивление датчика тока до 0,1 оМа,

Лабораторный блок питания с регулировкой напряжения и тока

добавил второй силовой транзистор параллельно первому,

Лабораторный блок питания с регулировкой напряжения и тока

но в эмиттерных цепях каждого транзистора стоит токо-выравнивающий или балластный резистор.

Лабораторный блок питания с регулировкой напряжения и тока

Силовые транзисторы можно любые соответствующей мощности, ток коллектора транзистора желательно 10 ампер и выше, при этом мощность рассеивания должна быть 100 и более ватт.

Так как данная схема — линейная, я очень советую использовать транзисторы в металлических корпусах, на крайняк транзисторы в корпусе ТО247, чтобы не возникли проблемы с теплоотдачей.

Транзисторы в железных корпусах.

В схеме имеем три мощных резистора, балластные советую взять на 5 ватт, а вот датчик тока и на 10 ватт не помешает.

Лабораторный блок питания с регулировкой напряжения и тока

Балластные резисторы советую взять сопротивлением 0,22 Ома у меня они к сожалению закончились, поэтому поставил на 0,1 Ом, но если транзисторы имеют максимально идентичные параметры, то такое решение даже лучше.

Лабораторный блок питания с регулировкой напряжения и тока

В моём случае, в качестве силовых транзисторов изначально использовал ключи 2SD209 по сути это аналог ключей MJE13009, оба варианта очень часто применяются в компьютерных блоках питания.

Лабораторный блок питания с регулировкой напряжения и тока

Каждый такой транзистор может рассеивать 100-130 ватт мощности, но лишь в том случае, если имеется хорошее охлаждение и вы уверены в подлинности транзисторов, но их основная проблема слишком низкий коэффициент усиления по току, всего около 20.

Аналогичное ключи ставить я крайне не рекомендую по нескольким причинам. Во-первых регулировка будет нелинейной из за малого усиления ключей, по этой же причине управлять такими транзисторами тяжело, поэтому драйверный ключик будет жестко нагреваться и ему будет нужен небольшой радиатор.

Очень советую транзисторы в металлических корпусах, наподобие 2N3055, для таких схем они идеально подходят. Металлический корпус, приличная мощность и ток коллектора, а коэффициент усиления по току около 200, как раз то, что нужно.

Я в итоге поставил ключи 2SD1047, они обладают приличным усилением, применяются как в источниках питания, так и в выходных каскадах усилителей мощности низкой частоты.

Лабораторный блок питания с регулировкой напряжения и тока

Радиатор для ключей удобно использовать общий, притом изолировать ключи прокладками не нужно, так как подложки или коллекторы в нашей схеме общие.

Лабораторный блок питания с регулировкой напряжения и тока

Лабораторный блок питания с регулировкой напряжения и тока

После подачи питания на схему стабилизатора нужно путём вращения данного, подстроечного резистора выставить максимальный выходной ток,

Еще по теме:  Куда звонить если плохо показывает телевизор

Лабораторный блок питания с регулировкой напряжения и тока

допустим 5 ампер, далее выставляем максимальное напряжение на выходе, тут всё зависит от того, какой у вас источник питания, какой у него ток и напряжение на выходе, то есть данный стабилизатор без проблем можно скорректировать под любой источник питания.

Введите электронную почту и получайте письма с новыми поделками.

Теперь подаем питание на вход стабилизатора и проверяем минимальное, выходное напряжение — оно как видим 0 вольт, что и требовалось доказать, регулировка очень плавная во всём диапазоне.

Лабораторный блок питания с регулировкой напряжения и тока

Теперь проверим ток, минимальный выходной ток можно скинуть вплоть до 0, а максимальных 5 ампер схема выдают без проблем.

Лабораторный блок питания с регулировкой напряжения и тока

Один из самых важных тестов — насколько просядет выходное напряжение при определенных токах, ну давайте посмотрим, но перед этим важно указать, что на проводах, измерительном шунте амперметра и на самом стабилизаторе, а также на токо-выравнивающих резисторах будут падения напряжения, то есть на указанных участках будут просадки, это в случае любого источника питания.

Ток 1 ампер, просадка около 0,1 вольта,

Лабораторный блок питания с регулировкой напряжения и тока

ток 3 ампера просадка всего 0,4 вольта

Лабораторный блок питания с регулировкой напряжения и тока

и наконец максимальный ток 5 ампер, просадка 0,65 вольт, без измерительного оборудования эти цифры были бы гораздо меньше.

Лабораторный блок питания с регулировкой напряжения и тока

Проверим стабильность выходного напряжения при резких изменениях входного, ну например перепады в сети.

Как видим стабилизатор держится молодцом, при изменении входного напряжения на 10 вольт выходное изменяется лишь на 50-70 милливольт.

Лабораторный блок питания с регулировкой напряжения и тока

А теперь пульсации на выходе, при итоге в 1 ампер пульсации не более 20 милливольт, при токе в 3 ампера — около 25-30 милливольт,

Лабораторный блок питания с регулировкой напряжения и тока

а при максимальном токе в 5 ампер, пульсации на выходе около 50-60 милливольт, согласитесь это неплохой показатель для блока питания такого уровня.

Автор; Ака Касьян.

Как вам статья?

Источник: xn--100—j4dau4ec0ao.xn--p1ai

Простой лабораторный блок питания.

Описанием этого простого лабораторного блока питания, я открываю цикл статей, в которых познакомлю Вас с простыми и надёжными в работе разработками (в основном различных источников питания и зарядных устройств), которые приходилось собирать по мере необходимости из подручных средств.
Для всех этих конструкций в основном использовались детали и части от списанной с эксплуатации старой оргтехники.

И так, понадобился как-то срочно блок питания с регулировкой выходного напряжения в пределах 30-40 вольт и током нагрузки в районе 5-ти ампер.

В наличии имелся трансформатор от бесперебойника UPS-500, в котором при соединении вторичных обмоток последовательно, получалось около 30-33 Вольт переменного напряжения. Это меня как раз устраивало, но осталось решить, по какой схеме собирать блок питания.

Если делать блок питания по классической схеме, то вся лишняя мощность при низком выходном напряжении будет выделяться на регулирующем транзисторе. Это мне не подходило, да и делать блок питания по предлагаемым схемам как то не захотелось, и ещё нужно было-бы для него искать детали.
По этому разработал схему под те детали, какие на данный момент у меня были в наличии.

Еще по теме:  Настройка 3d на телевизоре LG

highslide.js

За основу схемы взял ключевой стабилизатор, чтобы на греть в пустую окружающее пространство выделяемой мощностью на регулирующем транзисторе.
Здесь нет ШИМ-регулирования и частота включения ключевого транзистора, зависит только от тока нагрузки. Без нагрузки частота включения в районе одного герца и менее, зависит от индуктивности дросселя и ёмкости конденсатора С5. Включение слышно по небольшому циканию дросселя.

Транзисторы MJ15004 были в огромном количестве от ранее разобранных бесперебойников, поэтому решил поставить их на выходные. Для надёжности поставил два в параллель, хотя и один вполне справляется со своей задачей.
Вместо них можно поставить любые мощные p-n-p транзисторы, например КТ-818, КТ-825.

Дроссель L1 можно намотать на обычном Ш-образном (ШЛ) магнитопроводе, его индуктивность особо не критична, но желательно, чтобы подходила ближе к нескольким миллигенри.
Берётся любой подходящий сердечник, Ш, ШЛ, с сечением желательно не меньше 3 см,. Вполне подойдут сердечники от выходных транформаторов ламповых приёмников, телевизоров, выходные трансформаторы кадровых развёрток телевизоров и т.д. Например стандартный размер Ш, ШЛ-16х24.
Далее берётся медный провод, диаметром 1,0 — 1,5 мм и мотается до заполнения окна сердечника полностью.
У меня дроссель намотан на железе от трансформатора ТВК-90, проводом 1,5 мм до заполнения окна.
Магнитопровод, конечно собираем с зазором 0,2-0,5мм.(2 — 5 слоёв обычной писчей бумаги).

highslide.js

highslide.js

highslide.js

Единственный минус этого блока питания, под большой нагрузкой дроссель у меня жужжит, и этот звук меняется от величины нагрузки, что слышно и немного достаёт. Поэтому наверно нужно дроссель хорошо пропитывать, а может ещё лучше — залить полностью в каком нибудь подходящем корпусе эпоксидкой, чтобы уменьшить звук «цикания» .

Транзисторы я установил на небольшие алюминиевые пластины, и на всякий случай поставил внутрь ещё и вентилятор для их обдува.

Вместо VD1 можно ставить любые быстрые диоды на соответствующее напряжение и ток, у меня просто в наличии много диодов КД213, поэтому я их в таких местах в основном везде и ставлю. Они достаточно мощные (10А) и напряжение 100В, что вполне достаточно.

На мой дизайн блока питания особо внимание не останавливайте, задача стояла не та. Нужно было сделать быстро, и работоспособно. Сделал временно в таком корпусе и в таком оформлении, и пока это «временно» уже довольно долго работает.
Можно в схему ещё добавить амперметр для удобства. Но это дело личное. Я поставил одну головку для измерения напряжения и тока, шунт для амперметра сделал из толстого монтажного провода (на фотографиях видно, намотан на проволочном резисторе) и поставил переключатель «Напряжение» — «Ток». На схеме это просто не показал.

—>Категория : Блоки питания | —>Просмотров : 425005 | —>Добавил : Seriy1234

Понравилась статья — нажми на кнопку!

Источник: vprl.ru

Оцените статью
Добавить комментарий