Питание монитора тип разъема

Для работы современного ЖК монитора требуется сразу несколько питающих напряжений — 1,5, 1,8, 2,5, 3,3, 5, 12 В и др. При всем этом, основным блоком питания вырабатывается одно (как правило, 12 В) или два напряжения (как правило, 12 и 5 В). Для получения остальных номиналов в составе монитора имеется специальный узел — источник постоянных напряжений.

Как правило, его элементы размещаются на главной плате (иначе, плате графического контроллера — скалера). Значение этого узла схемы монитора трудно переоценить, так как от его исправности напрямую зависит работоспособность монитора. Поэтому практически при всех неисправностях ЖК мониторов начинать диагностику необходимо именно с этого узла.

Напряжения 1,5, 1,8, 2,5 и 3,3 В используются для питания микросхем скалера, трансмиттера, ресиверов интерфейсов DVI, TMDS и LVDS, микросхем оперативной памяти. Применение низковольтных напряжений для питания этих каскадов и микросхем обусловлено тем, что они функционируют на высоких тактовых частотах. Поэтому снижением величины питающего напряжения высокочастотных микросхем разработчики пытаются уменьшить рассеиваемую на них мощность, повысить их надежность и решить проблему отвода тепла. В некоторых мониторах, особенно в моделях 2006-2009 гг, напряжение 3,3 В используется и для питания управляющего микроконтроллера несмотря на то, что его тактовая частота является относительно низкой. Сейчас еще достаточно часто можно видеть, что в качестве микроконтроллера в ЖК мониторах производители используют «устаревшие» или «медленные», но более дешевые микроконтроллеры с напряжением питания 5 В.

Всем разница между разными подключениями монитора

Кроме питания управляющего микроконтроллера, напряжение 5 В часто используется для питания элементов в составе ЖК панели. Если быть более точным, то в составе панели имеется свой регулятор напряжения, который формирует из 5 В постоянные напряжения разной полярности и номинала, необходимые для работы драйверов строк, столбцов и других узлов. Кроме того, напряжение 5 В традиционно используется для питания светодиодного индикатора на лицевой панели управления монитора.

Напряжение 12 В требуется, в первую очередь, для работы энергоемкого инвертора питания ламп задней подсветки, поэтому напряжение 12 В формируется основным блоком питания монитора.

Для того чтобы получить несколько различных номиналов напряжений из одного или двух постоянных напряжений, используется преобразование постоянного тока в постоянный ток, так называемое DC/DC-преобразование. Оно реализуется с помощью линейных или импульсных стабилизаторов (преобразователей). Линейные преобразователи применяются в слаботочных цепях, а импульсные — в сильноточных, где значение тока может достигать нескольких ампер. Как уже отмечалось, все эти преобразователи логически объединены в узел DC/DC-преобразователя, конструктивно размещенный на плате скалера. Именно поэтому неисправности цепей питания часто приводят к необходимости замены всей этой платы, что, конечно же, экономически необоснованно, т.к. провести диагностику и ремонт DC/DC-преобразователя способен специалист даже с небольшим практическим опытом.

Представить место DC/DC-преобразователей в схемотехнике ЖК монитора помогут блок-схемы на рис. 1 и 2. На рис. 1 предполагается, что основным блоком питания формируется два выходных напряжения: 5 и 12 В. В этом случае низковольтные напряжения получают путем линейного преобразования напряжения 5 В.

 Блок-схема DC/DC-преобразователей на основе линейных стабилизаторов

Рис. 1. Блок-схема DC/DC-преобразователей на основе линейных стабилизаторов

На рис. 2 предполагается, что основным блоком питания формируется только напряжение 12 В. В этом случае сначала из напряжения 12 В методом импульсного DC/DC-преобразования формируется напряжение 5 В, а из него линейными регуляторами формируются низковольтные напряжения.

Блок-схема DC/DC-преобразователей на основе импульсного стабилизатора

Рис. 2. Блок-схема DC/DC-преобразователей на основе импульсного стабилизатора

Естественно, на рис. 1 и 2 представлены только два базовых варианта схемотехники DC/DC-преобразователей, но на практике могут попадаться различные комбинации этих вариантов.

В качестве примера, в котором реализованы оба типа преобразования напряжений, рассмотрим схему DC/DC-преобразователя монитора «Sony SDM-X72». Схемотехнику преобразователя этого монитора можно отнести к варианту, представленному на рис. 2, а его принципиальная электрическая схема приводится на рис. 3.

Принципиальная электрическая схема DC/DC-преобразователя монитора Sony SDM-X72

Рис. 3. Принципиальная электрическая схема DC/DC-преобразователя монитора Sony SDM-X72

Блок-схема DC/DC-преобразователя монитора Sony SDM-X72

Рис. 4. Блок-схема DC/DC-преобразователя монитора Sony SDM-X72

Блок-схема, помогающая разобраться в назначении элементов принципиальной схемы, представлена на рис. 4. DC/DC-преобразователь формирует следующие выходные напряжения:

— напряжение 2,5 В (обозначение на рис. 3 и 4 — +2.5V) для питания цифровой части скалера;

— напряжение 3,3 В (D3.3V) для питания интерфейсной части скалера;

— напряжение 3,3 В (+3.3V_F) для питания микросхем буферной памяти и трансмиттеров LVDS;

— напряжение 3,3 В (AVDD_3.3V) для питания аналоговой части скалера;

— напряжение 5 В(+5V_A) для питания микроконтроллера и схемы управления монитором;

— напряжение 5 В(+5V_B) для питания ЖК панели, аналогового видеопроцессора, интерфейса DVI. Из этого же напряжения формируются и все низковольтные напряжения (2,5 и 3,3 В).

Оба канала 5 В имеют энергоемкую нагрузку, и для формирования этих напряжений используются импульсные регуляторы.

DC/DC-преобразователь управляется двумя дискретными сигналами OFF и PD (имеют два возможных уровня — высокий и низкий), которые формируются микроконтроллером монитора. Этими сигналами разрешается или запрещается формирование выходных напряжений.

Высокий (активный) уровень сигнала OFF блокирует работу микросхемы IC201, запрещая тем самым формирование напряжений +5V_A и +5V_B, а значит, не формируются напряжения 2,5 и 3,3 В. Другими словами, активизация сигнала OFF приводит к полному отключению монитора и его перезапуску. Микроконтроллер активизирует сигнал OFF при возникновении аварийных режимов работы.

Сигнал PD разрешает или запрещает формирование напряжения +5V_B, отключая тем самым практически все элементы монитора, за исключением микроконтроллера, который питается напряжением +5V_A. Фактически сигнал PD является сигналом «горячего» подключения разъема DVI, т.е. при подключении к этому разъему устройства монитор переводится в активное состояние.

Оба импульсных преобразователя напряжений +5V_A и +5V_B построены по схеме понижающего импульсного преобразователя. Ключевыми элементами этих преобразователей являются МОП транзисторы Q205 и Q206, которые переключаются с высокой частотой импульсами, формируемыми двухканальным ШИМ контроллером IC201 (BA9741F).

Сглаживание импульсов, полученных на истоках МОП транзисторов, осуществляется за счет дросселей L201 и L202 и конденсаторов C210 и C214. В фазе «накачки», когда транзисторы Q205 и Q206 открыты управляющими импульсами, происходит накопление энергии в дросселях и фильтрующих конденсаторах. В фазе «разряда», когда транзисторы заперты, накопленная энергия через разрядные диоды D201 и D202 поступает в нагрузку (выпрямительные диоды с барьером Шоттки: I = 3 А, U ПР = 750 В, U ОБР = 60 В). В результате формируются постоянные напряжения +5V_A и +5V_B.

Транзисторы Q205 и Q206 управляются микросхемой IC201 через предварительные усилители на транзисторах Q201-Q204, которые образуют собой двухтактные эмиттерные повторители. Этими каскадами создаются двухполярные импульсы на затворах МОП транзисторов, что значительно улучшает их управляемость и снижает динамические потери.

Функциональная схема двухканального ШИМ контроллера BA9741F представлена на рис. 5, а назначение выводов приведено в таблице.

Архитектура двухканального ШИМ контроллера BA9741F

Рис. 5. Архитектура двухканального ШИМ контроллера BA9741F

Таблица. Назначение выводов ШИМ контроллера BA9741F

Источник: www.radioradar.net

Displayport — виды, характеристики, особенности версий dp кабеля. Displayport vs HDMI

DisplayPort (DP) является одним из самых популярных интерфейсов при подключении мониторов, тв и другой мультимедийной техники.

displayport и vesa

DisplayPort (DP) является одним из самых прогрессивных интерфейсов, который предназначен для высококачественного соединения видео или аудиотехники. Чаще всего данный интерфейс применяется для соединения компьютерных устройств с домашними кинотеатрами, либо же с различными дисплеями. С его помощью можно передавать цифровой контент с источника на стороннее устройство в самом высоком разрешении, вплоть до 8К.

Еще по теме:  Как перезагрузить компьютер с клавиатуры без монитора

Что такое DisplayPort и для чего он предназначен?

Сегодня DisplayPort зачастую необходим, чтобы подключить персональный компьютер к современному монитору. Таким способом происходит соединение ПК с системами домашнего кинотеатра. Также интерфейс может применяться при подключении различной видеотехники, либо же акустических систем. Кроме графического контента он в состоянии передавать на сторонние устройства еще и аудиосигнал.

displayport и его предназначение

С его помощью пользователи стали подключать сразу несколько мониторов к одному компьютеру, так как пропускная способность позволяет это делать без каких-либо серьезных ограничений. Причем картинка будет отображаться на дисплеях в максимально доступном сейчас разрешении 2K и 4K (если источник и контент могут обеспечить соответствующие мощности).

История DisplayPort

Самая первая версия DisplayPort была анонсирована в 2006 году. Она успешно прошла сертификацию со стороны консорциума Video Electronics Standard Association (VESA). В технике данный интерфейс начали применять уже в 2008 году. Именно в этот период начинают появляться в свободной продаже материнские платы для компьютеров и мониторы с соответствующим слотом.

Благодаря DisplayPort крупные производители электроники решили вытеснить с рынка морально и физически устаревшие стандарты DVI и VGA. DisplayPort 1.1 был представлен в 2007 году.

А вот версия 1.2 вышла в свет уже в 2011 году. С этого момента практически вся техника Apple стала получать DP. В 2014 году появился стандарт 1.3 с еще большей пропускной способностью. А вот релиз DisplayPort 1.4 состоялся в 2016 году. Он подарил возможность передавать контент в формате 8K, который наверняка будет популярен в ближайшем будущем.

На протяжении почти всей своей истории DisplayPort не облагался роялти, но с марта 2015 года выплата за каждое отдельное устройство составляет 20 центов. Сегодня он является собственностью VESA. Предусмотрен соответствующий торговый знак.

Виды DisplayPort выхода

Разъемы DisplayPort существуют двух видов:

  • Стандартный полноразмерный DisplayPort (DP) Это интерфейс, который зачастую используется в персональных компьютерах, телевизорах и ноутбуках. Сегодня он представляется самым распространенным форм-фактором.
  • Mini DisplayPort (Mini DP) Миниатюрная версия этого интерфейса. Такой стандарт может встречаться в портативных аппаратах (планшеты, нетбуки и так далее). По своим характеристикам почти не уступает полногабаритному собрату.

displayport и displayport mini

В разъемах Mini DP могут отсутствовать элементы блокировки. Но стандартный интерфейс получил такой механизм.

Технические характеристики и особенности DisplayPort разъема

Важной особенностью DisplayPort является крайне низкое напряжение питания. Что касается посторонних наводок, то и они максимально низкие. Данный интерфейс еще недавно поддерживал популярную технологию защиты медиа контента HDCP 1.3. Если сравнивать с DVI (Dual-Link), то DisplayPort имеет вдвое большую пропускную способность. При этом Mini DP почти в десять раз меньше, нежели разъем DVI.

displayport фото кабеля

Как уже отмечалось, DisplayPort умеет одновременно передавать аудио и видеосигналы. Он обладает действительно широким каналом, который предназначен для передачи информации. Если для самых первых версий «потолком» являлся показатель 9 Гбит в секунду, то сейчас канал расширился почти до 26 Гбит в секунду.

Стоит отметить, что на данный момент сигнал может передаваться по кабелю DisplayPort, длина которого не превышает 15 метров. Правда, через 15-метровый кабель можно работать с сигналом Full HD и не более. А вот 3-метровый шнур дает возможность насладиться максимальным разрешением. Но при помощи оптоволокна проблема с ограниченным разрешением полностью исчезнет.

Разъем DisplayPort заполучил 20 контактов. Он передает информацию с использованием четырех каналов. По некоторым данным, интерфейс имеет разрядность цвета до 48 бит на один канал. Присутствует и технический канал, скорость которого поднялась уже почти до 800 Мбит в секунду, хотя еще недавно не превышала 1 Мбит/с.

Максимальное разрешение для DisplayPort (версия 1.4) — 7680 на 4320 точек. Предельная частота смены кадров — 240 Гц.

При помощи такого интерфейса есть уникальная возможность подключать к источнику сигнала сразу несколько мониторов. Появилась поддержка прогрессивного шифрования DPCP.

Версии DisplayPort

Самая первая версия DisplayPort 1.0 появилась в 2006 году. Она предлагала передачу данных со скоростью до 8,65 Гбит в секунду, а длина кабеля составляла 2 метра. Следующая версия 1.1 не имела каких-то существенных отличий. Куда больший скачок DisplayPort сделал с выходом версии 1.2. Скорость передачи информации выросла до 17,30 Гбит в секунду.

Также появилась возможность подключать до четырех мониторов к одному компьютеру. Вспомогательный (технический) канал также увеличил пропускную способность до 720 Мбит/с. Полноценная же передача сигнала теперь возможна до 3 метров.

версии displayport кабелей

DisplayPort 1.3 еще больше увеличил скоростные показатели. Теперь максимальная скорость обмена данными достигла 26 Гбит/с, а также появилась полноценная поддержка 8K-разрешения. А в марте 2016 года был представлен DisplayPort 1.4, который заполучил поддержку HDR10 и DSC 1.2 (Display Stream Compression). При этом скорость работы с данными осталась прежней.

Кабели DisplayPort — что нужно знать перед покупкой?

Сразу стоит отметить, что все кабели DisplayPort совместимы с любыми устройствами, получившими аналогичный разъем. Совместимость не зависит от версии интерфейса и уровня сертификации. Все доступные функции будут работать через любой кабель DP. Это стало возможным благодаря единой базовой схеме подключения.

особенности dp кабелей

Кабели DisplayPort могут отличаться поддержкой максимальной скорости передачи данных. Интерфейс автоматически определяет четыре режима передачи информации: HBR, RBR, HBR2, HBR3. При этом некоторые кабели DP могут поддерживать не все перечисленные режимы. VESA предлагает сертификаты для каждого уровня пропускной способности. Но эти сертификаты не являются обязательными.

Если кабель прошел сертификацию, то он получает соответствующее маркетинговое название.

Виды сертифицированных кабелей DisplayPort:

  • Кабель RBR DisplayPort. Пониженная скорость передачи данных (RBR). Пропускная способность — до 6,48 Гбит/с.
  • Стандартный кабель DisplayPort. Высокая скорость передачи данных. Пропускная способность — до 10,80 Гбит/с (HBR), до 21,60 Гбит/с (HBR2).
  • Кабель DP8K. Высокая скорость передачи данных (HBR3). Пропускная способность — до 32,40 Гбит/с.

Стандарт DisplayPort не определяет максимальную длину кабелей, хотя стандарт DisplayPort 1.2 устанавливает минимальное требование, чтобы все кабели с длиной до 2 метров поддерживали скорости HBR2 (21,6 Гбит/с). Кабели с длиной более 2 метров могут поддерживать или не поддерживать скорости HBR/HBR2, а кабели любой длины могут поддерживать или не поддерживать скорости HBR3.

Про переходники DisplayPort

переходник с displayport на vga

Сегодня в продаже можно найти достаточно много различных переходников, которые помогают вывести изображение с источника практически на любой дисплей. Особой популярностью пользуются переходники с DisplayPort на VGA или HDMI.

Например, в последнее время производители флагманских видеокарт стараются оснащать свои устройства разъемами DP. При этом далеко не все мониторы поддерживают данный интерфейс. Но при помощи переходников можно безболезненно решить данную проблему.

Преимущества и недостатки DisplayPort

DP имеет следующие достоинства:

  • Эффективный самоблокирующийся разъем.
  • Очень низкий уровень электромагнитных помех.
  • Используется надежное шифрование данных.
  • Гибкое распределение доступной полосы пропускания между аудио и видео.
  • Передача на большие расстояния по альтернативным физическим средам, таким как оптоволокно.
  • Поддержка дисплеев с максимально возможным разрешением.
  • Возможность передавать сигнал одновременно на несколько мониторов.
  • Высокоскоростной вспомогательный канал.
  • Простая и надежная фиксация разъемов.
  • Длина кабеля серьезно ограничена.
  • Пока еще небольшая база поддерживаемых устройств.
  • Отсутствие команд управления бытовой техникой.

Сравнение DisplayPort и HDMI

DisplayPort заполучил поддержку более высоких разрешений. Уже сейчас данный интерфейс готов пропускать сигнал в формате 8K, причем с высокой скоростью обновления экрана. Отсюда и более широкая полоса пропускания в сравнении с HDMI. Также DisplayPort в состоянии передавать видеопоток по одному кабелю сразу на несколько (до 4) мониторов.

Изначально разъемы DP имеют встроенные элементы фиксации. У HDMI такого единого стандарта нет. С другой стороны, кабель HDMI гораздо более длинный. Так, его длина может достигать 30-40 метров. Почти вся современная техника и электроника поддерживает именно интерфейс HDMI.

Еще по теме:  Какой тип монитора выбрать

Это телевизоры, игровые приставки, медиаплееры, компьютеры, ноутбуки, планшеты и так далее.

Актуальность DisplayPort

Сегодня DisplayPort используется в основном для подключения продвинутых компьютеров к соответствующим мониторам. Крупные производители видеокарт оснащают свою флагманскую продукцию как раз этим интерфейсом. Также он может применяться для инсталляции систем домашнего кинотеатра. В перспективах DP способен укрепить свои позиции за счет популяризации формата 8K, который в будущем должен стать востребованным среди потребителей.

Источник: monitor4ik.com

16 типов компьютерных портов и их функции

Компьютерный порт — это интерфейс или точка соединения между компьютером и его периферийными устройствами. Вот некоторые из распространенных периферийных устройств — это мышь, клавиатура, монитор или дисплей, принтер, динамик, флэш-накопитель и другие. Основная функция компьютерного порта — выступать в качестве точки подключения, куда можно подключить кабель от периферийного устройства и обеспечить передачу данных от устройства и к устройству.

Порт компьютера также называют портом связи, поскольку он отвечает за связь между компьютером и его периферийным устройством. Обычно гнездовой конец разъема называется портом, и он обычно находится на материнской плате. В компьютерах порты связи можно разделить на два типа в зависимости от типа или протокола, используемых для связи.

Это последовательные порты и параллельные порты. Последовательный порт — это интерфейс, через который периферийные устройства могут быть подключены с использованием последовательного протокола, который предполагает передачу данных по одному биту за раз по одной линии связи.

Наиболее распространенный тип последовательного порта — это D-Subminiature или D-sub разъем, по которому передаются сигналы RS-232. С другой стороны, параллельный порт — это интерфейс, через который связь между компьютером и его периферийным устройством осуществляется параллельно, то есть данные передаются или выводятся параллельно с использованием более чем одной линии или провода связи. Порт принтера — это пример параллельного порта. В статье дается краткое введение в различные типы портов и их приложения.

PS/2

Разъем PS / 2 разработан IBM для подключения мыши и клавиатуры. Он был представлен в серии компьютеров IBM Personal Systems / 2, отсюда и название разъема PS / 2. Разъемы PS / 2 имеют пурпурный цвет для клавиатуры и зеленый для мыши.

PS / 2 — это 6-контактный разъем DIN. Схема выводов гнездового разъема PS / 2 показана ниже.

Несмотря на то, что распиновка портов PS / 2 для мыши и клавиатуры одинакова, компьютеры не распознают устройство при подключении к неправильному порту.

Порт PS / 2 теперь считается устаревшим портом, поскольку порт USB заменил его, и очень немногие современные материнские платы включают его в качестве устаревшего порта.

Последовательный порт

Последовательный порт Хотя связь в PS / 2 и USB является последовательной, технически термин «последовательный порт» используется для обозначения интерфейса, соответствующего стандарту RS-232. Есть два типа последовательных портов, которые обычно встречаются на компьютере: DB-25 и DE-9.

DB-25

DB-25 — это вариант разъема D-sub и оригинальный порт для последовательной связи RS-232. Они были разработаны как основной порт для последовательных подключений по протоколу RS-232, но для большинства приложений не требовались все контакты. Следовательно, DE-9 был разработан для последовательной связи на основе RS-232, в то время как DB-25 редко использовался в качестве последовательного порта и часто использовался как параллельный порт принтера как замена 36-контактного параллельного разъема Centronics.

DE-9 или RS-232 или COM порт

DE-9 является основным портом для последовательной связи RS-232. Это разъем D-sub с оболочкой E, который часто ошибочно называют DB-9. Порт DE-9 также называется COM-портом и обеспечивает полнодуплексную последовательную связь между компьютером и его периферией. Некоторые из приложений порта DE-9 — это последовательный интерфейс с мышью, клавиатурой, модемом, источниками бесперебойного питания (ИБП) и другими внешними устройствами, совместимыми с RS-232.

Распиновка порта DE-9 представлена ниже.

Использование портов DB-25 и DE-9 для связи сокращается и заменяется USB или другими портами.

Параллельный порт или 36-контактный порт Centronics

Параллельный порт — это интерфейс между компьютером и периферийными устройствами, такими как принтеры, с параллельной связью. Порт Centronics — это 36-контактный порт, который был разработан как интерфейс для принтеров и сканеров, поэтому параллельный порт также называется портом Centronics. До широкого использования портов USB параллельные порты были очень распространены в принтерах. Позже порт Centronics был заменен портом DB-25 с параллельным интерфейсом.

Аудио порты

Аудиопорты используются для подключения динамиков или других устройств вывода звука к компьютеру. Аудиосигналы могут быть аналоговыми или цифровыми, и в зависимости от этого порт и соответствующий ему разъем различаются.

Разъемы объемного звука или разъем TRS 3.5 мм

Это наиболее часто встречающийся аудиопорт, который можно использовать для подключения стереонаушников или каналов объемного звука. Система с 6 разъемами включена в большинство компьютеров для вывода звука, а также для подключения микрофона. 6 разъемов имеют цветовую маркировку: синий, салатовый, розовый, оранжевый, черный и серый. Эти 6 разъемов можно использовать для конфигурации объемного звука до 8 каналов.

Формат цифрового интерфейса Sony / Phillips (S / PDIF) — это аудиосвязь, используемая в домашних медиа. Он поддерживает цифровой звук и может передаваться с помощью коаксиального аудиокабеля RCA или оптоволоконного разъема TOSLINK. Большинство компьютерных домашних развлекательных систем оснащены S / PDIF через TOSLINK. TOSLINK (Toshiba Link) — это наиболее часто используемый цифровой аудиопорт, который может поддерживать 7.1-канальный объемный звук с помощью всего одного кабеля.

Видео порты

Порт VGA

Порт VGA используется во многих компьютерах, проекторах, видеокартах и телевизорах высокой четкости. Это разъем D-sub, состоящий из 15 контактов в 3 ряда. Разъем называется ДЭ-15. Порт VGA — это основной интерфейс между компьютерами и более старыми ЭЛТ-мониторами. Даже современные ЖК-мониторы и светодиодные мониторы поддерживают порты VGA, но качество изображения ухудшается.

VGA передает аналоговые видеосигналы с разрешением до 648X480.

С увеличением использования цифрового видео порты VGA постепенно заменяются портами HDMI и Display. Некоторые ноутбуки оснащены встроенными портами VGA для подключения к внешним мониторам или проекторам. Распиновка порта VGA показана ниже.

Цифровой видеоинтерфейс (DVI)

DVI — это высокоскоростной цифровой интерфейс между контроллером дисплея, таким как компьютер, и устройством отображения, таким как монитор. Он был разработан с целью передачи цифровых видеосигналов без потерь и замены аналоговой технологии VGA.

Существует три типа разъемов DVI в зависимости от передаваемых сигналов: DVI-I, DVI-D и DVI-A. DVI-I — это порт DVI со встроенными аналоговыми и цифровыми сигналами. DVI-D поддерживает только цифровые сигналы, а DVI-A поддерживает только аналоговые сигналы. Цифровые сигналы могут быть как одинарными, так и двойными, где одиночный канал поддерживает цифровой сигнал с разрешением до 1920X1080, а двойной канал поддерживает цифровой сигнал с разрешением до 2560X1600. На следующем изображении сравниваются структуры типов DVI-I, DVI-D и DVI-A вместе с распиновкой.

Mini-DVI

Порт Mini-DVI разработан Apple как альтернатива порту Mini-VGA и физически аналогичен таковому. Он меньше обычного порта DVI. Это 32-контактный порт, способный передавать сигналы DVI, композитный, S-Video и VGA с соответствующими адаптерами. На следующем изображении показан порт Mini-DVI и совместимый с ним кабель.

Micro-DVI

Порт Micro-DVI, как следует из названия, физически меньше Mini-DVI и способен передавать только цифровые сигналы. К этому порту можно подключать внешние устройства с интерфейсами DVI и VGA, при этом требуются соответствующие адаптеры. На следующем изображении порт Micro-DVI можно увидеть рядом с портами для наушников и USB.

Display Port

Display Port (DP) — это интерфейс цифрового дисплея с дополнительным многоканальным звуком и другими формами данных. Display Port разработан с целью замены портов VGA и DVI в качестве основного интерфейса между компьютером и монитором. Последняя версия DisplayPort 1.3 поддерживает разрешение до 7680 X 4320.

Порт дисплея имеет 20-контактный разъем, что намного меньше по сравнению с портом DVI и обеспечивает лучшее разрешение. Схема выводов порта дисплея показана ниже.

Еще по теме:  Появился красный пиксель на мониторе

Разъем RCA

Разъем RCA может передавать композитные видео- и стереофонические аудиосигналы по трем кабелям. Композитное видео передает аналоговые видеосигналы, а разъем выполнен в виде разъема RCA желтого цвета. Видеосигналы передаются по одному каналу вместе с импульсами строчной и кадровой синхронизации с максимальным разрешением 576i (стандартное разрешение). Красный и белый разъемы используются для стереофонических аудиосигналов (красный для правого канала и белый для левого канала).

Компонентное видео

Компонентное видео — это интерфейс, в котором видеосигналы разделяются более чем на два канала, и качество видеосигнала выше, чем у композитного видео. Как и композитное видео, компонентное видео передает только видеосигналы, и для стереозвука необходимо использовать два отдельных разъема. Компонентный видеопорт может передавать как аналоговые, так и цифровые видеосигналы. Порты обычно встречающегося компонентного видео используют 3 разъема и имеют цветовую кодировку: зеленый, синий и красный.

S-Video

Разъем S-Video или Separate Video используется для передачи только видеосигналов. Качество изображения лучше, чем у композитного видео, но имеет меньшее разрешение, чем у компонентного видео. Порт S-Video обычно черного цвета и присутствует на всех телевизорах и большинстве компьютеров. Порт S-Video выглядит как порт PS / 2, но состоит всего из 4 контактов.

Из 4 выводов один вывод используется для передачи сигналов интенсивности (черный и белый), а другой вывод используется для передачи цветовых сигналов. Оба этих контакта имеют соответствующие контакты заземления.

HDMI

HDMI — это аббревиатура от High Definition Media Interface. HDMI — это цифровой интерфейс для подключения устройств высокого и сверхвысокого разрешения, таких как компьютерные мониторы, телевизоры высокой четкости, проигрыватели Blu-Ray, игровые консоли, камеры высокого разрешения и т. Д. HDMI можно использовать для передачи несжатого видео и сжатых или несжатых аудиосигналов. Порт HDMI типа A показан ниже.

Разъем HDMI состоит из 19 контактов и последней версии HDMI, т.е. HDMI 2.0 может передавать цифровой видеосигнал с разрешением до 4096 × 2160 и 32 аудиоканала. Распиновка порта HDMI выглядит следующим образом.

USB

Универсальная последовательная шина (USB) заменила последовательные порты, параллельные порты, разъемы PS / 2, игровые порты и зарядные устройства для портативных устройств. Порт USB может использоваться для передачи данных, действовать как интерфейс для периферийных устройств и даже действовать как источник питания для устройств, подключенных к нему. Есть три типа портов USB: тип A, тип B или мини-USB и Micro USB.

На рисунке показаны разъемы USB различных поколений (USB 1.1/2.0/3.0) разделенные по двум видам критериев:

2) размер разъема

  • стандартный разъем USB
  • mini USB разъем
  • micro USB разъем

USB типа A

Порт USB Type-A представляет собой 4-контактный разъем. Существуют разные версии USB-портов типа A: USB 1.1, USB 2.0 и USB 3.0. USB 3.0 является общепринятым стандартом и поддерживает скорость передачи данных 400 Мбит / с. Также выпущен USB 3.1, поддерживающий скорость передачи данных до 10 Гбит / с. USB 2.0 имеет черный цвет, а USB 3.0 — синий. На следующем изображении показаны порты USB 2.0 и USB 3.0.

Распиновка порта USB Type — A показана ниже. Распиновка общая для всех стандартов Типа — А.

USB типа B

Разъемы USB типа B, официально называемые разъемами Standard-B, имеют квадратную форму с небольшим закруглением или большим квадратным выступом наверху, в зависимости от версии USB. Разъемы USB Type-B поддерживаются во всех версиях USB, включая USB 3.0, USB 2.0 и USB 1.1. Второй тип разъема «B», называемый Powered-B, также существует, но только в USB 3.0. Разъемы USB 3.0 типа B часто имеют синий цвет, а разъемы USB 2.0 типа B и USB 1.1 типа B часто черные. Это не всегда так, потому что разъемы и кабели USB Type B могут быть любого цвета по выбору производителя.

Разъемы USB типа B чаще всего встречаются на больших компьютерных устройствах, таких как принтеры и сканеры. Вы также иногда найдете порты USB типа B на внешних устройствах хранения, таких как оптические приводы, дисководы для гибких дисков и корпуса жестких дисков. Штекеры USB типа B обычно находятся на одном конце кабеля USB A / B. Штекер USB типа B вставляется в гнездо USB типа B на принтере или другом устройстве, а штекер USB типа A входит в гнездо USB типа A, расположенное на главном устройстве, например, компьютере.

Разъемы USB типа B в USB 2.0 и USB 1.1 идентичны, что означает, что штекер USB типа B от одной версии USB подходит к розетке USB типа B как собственной версии, так и другой версии USB. Разъемы USB 3.0 типа B имеют другую форму, чем предыдущие, поэтому вилки не подходят к предыдущим розеткам. Однако новый форм-фактор USB 3.0 типа B был разработан таким образом, чтобы позволить предыдущим разъемам USB типа B от USB 2.0 и USB 1.1 подходить к розеткам USB 3.0 типа B. Другими словами, штекеры USB 1.1 и 2.0 типа B физически совместимы с гнездами USB 3.0 типа B, но штекеры USB 3.0 типа B несовместимы с гнездами USB 1.1 или USB 2.0 типа B. Причина изменения заключается в том, что разъемы USB 3.0 Type B имеют девять контактов, что на несколько больше, чем четыре контакта, обнаруженных в предыдущих разъемах USB Type B, чтобы обеспечить более высокую скорость передачи данных USB 3.0. Эти штифты нужно было куда-то пропустить, поэтому форму типа B пришлось несколько изменить.

На рисунке выше показан разъем USB 3.0 Type micro B

USB типа C

USB Type-C является последней спецификацией USB и представляет собой двусторонний разъем. USB Type-C должен заменить типы A и B и считается перспективным в будущем.

Порт USB Type-C состоит из 24 контактов. Распиновка USB Type-C приведена ниже. USB Type-C может выдерживать ток 3А. Эта функция обработки высокого тока используется в новейшей технологии быстрой зарядки, при которой батарея смартфона полностью заряжается за очень короткое время.

RJ-45

Ethernet — это сетевая технология, которая используется для подключения вашего компьютера к Интернету и связи с другими компьютерами или сетевыми устройствами. Интерфейс, который используется для компьютерных сетей и телекоммуникаций, известен как Registered Jack (RJ), а порт RJ-45, в частности, используется для Ethernet по кабелю.

Разъем RJ-45 представляет собой модульный разъем типа 8 — 8 контактов (8P — 8C). Новейшая технология Ethernet называется Gigabit Ethernet и поддерживает скорость передачи данных более 10 Гбит / с. Ниже показан порт Ethernet или LAN с разъемом типа 8P — 8C вместе с кабелем RJ-45 с вилкой. Модульный разъем 8P — 8C без ключа обычно обозначается как Ethernet RJ-45. Часто порты RJ-45 оснащены двумя светодиодами для индикации передачи и обнаружения пакетов.

RJ-11

RJ-11 — это еще один тип зарегистрированного разъема, который используется в качестве интерфейса для подключения телефона, модема или ADSL. Несмотря на то, что компьютеры почти никогда не оснащены портом RJ-11, они являются основным интерфейсом во всех телекоммуникационных сетях. Порты RJ-45 и RJ11 похожи друг на друга, но RJ-11 — это меньший по размеру порт, в котором используется 6-контактный 4-контактный разъем (6P-4C), хотя достаточно 6-канального-2 контакта (6P-2C). Ниже показано изображение порта RJ-11 и совместимого с ним разъема.

Следующее изображение можно использовать для сравнения портов RJ-45 и RJ-11.

е-SATA

e-SATA — это внешний разъем Serial AT Attachment, который используется в качестве интерфейса для подключения внешних запоминающих устройств. Современные разъемы e-SATA называются e-SATAp и расшифровываются как Power e-SATA ports. Это гибридные порты, способные поддерживать как e-SATA, так и USB. Ни организация SATA, ни организация USB официально не одобрили порт e-SATAp и должны использоваться на риск пользователя.

На изображении выше показан порт e-SATAp. Он показывает, что можно подключать как устройства e-SATA, так и USB.

Источник: ks-is.com

Оцените статью
Добавить комментарий