Это разновидность терморезистора, отличающаяся тем, что имеет положительный температурный коэффициент сопротивления, намного превышающий таковой у металлов (начальное сопротивление составляет единицы или десятки ом, а при определенной температуре сопротивление резко растет в несколько тысяч раз), тогда как у обычных терморезисторов сопротивление с нагревом падает. Позистор — это элемент с отрицательным динамическим сопротивлением, так как при протекании тока он нагревается и сопротивление его растет. Характерным свойством позистора является самостабилизация температуры: при повышении внешней температуры или ухудшении теплоотвода рост температуры позистора приводит к снижению тока через него и возвращению температуры к исходной. И наоборот, когда от позистора начинают отбирать тепло, снижение температуры приводит к увеличению тока и усилению нагрева. Эту температуру можно регулировать, меняя подаваемое на позистор напряжение, что используется в недорогих паяльных станциях: в паяльнике установлен керамический нагреватель на основе позистора и отсутствует какой-либо датчик температуры, а при задании разных температур просто регулируется напряжение на нагревателе.
Что такое позистор и его роль в электронике
Своеобразным применением позисторов является токовая защита. При протекании малого тока позистор не нагревается и имеет малое сопротивление. Короткое замыкание или перегрузка по току вызывает разогрев позистора и рост сопротивления, фактически разрывая цепь. Позистор здесь играет роль самовосстанавливающе гося предохранителя, но в отличие от обычных самовосстанавливающи хся предохранителей (которые тоже своего рода позисторы, но на полимерной основе), позистор не теряет своих свойств после многократного срабатывания.
Позисторы делаются на основе керамики из титаната бария, изменение его сопротивления связано с явлениями в окрестностях фазового перехода.
Источник: www.bolshoyvopros.ru
Что такое термистор и позистор и где они применяются
Терморезистором называется полупроводниковый компонент с температурозависимым электрическим сопротивлением. Изобретенный в далеком 1930 году ученым Самюэлем Рубеном, по сей день данный компонент находит самое широкое применение в технике.
Изготавливают терморезисторы из различных материалов, температурный коэффициент сопротивления (ТКС) которых достаточно высок, — значительно превосходит металлические сплавы и чистые металлы, то есть именно из особых, специфичных полупроводников.
Непосредственно основной резистивный элемент получают посредством порошковой металлургии, обрабатывая халькогениды, галогениды и оксиды определенных металлов, придавая им различные формы, например форму дисков или стержней различных размеров, больших шайб, средних трубок, тонких пластинок, маленьких бусинок, размерами от единиц микрон до десятков миллиметров.
Подключил ПОЗИСТОР к лампе 220 Вольт и результат меня удивил.Свет выключится САМ
По характеру корреляции сопротивления элемента и его температуры, разделяют терморезисторы на две большие группы — на позисторы и термисторы . Позисторы обладают положительным ТКС (по этой причине позисторы еще называют PTC-термисторами), а термисторы — отрицательным (их называют поэтому NTC-термисторами).
Термистор — температурно-зависимый резистор, изготавливается из полупроводникового материала, имеющего отрицательный температурный коэффициент и высокую чувствительность, позистор — температурно-зависимый резистор, имеющий положительный коэффициент. Так, с возрастанием температуры корпуса позистора растет и его сопротивление, а с ростом температуры термистора — его сопротивление соответственно уменьшается.
Материалами для терморезисторов сегодня служат: смеси поликристаллических оксидов переходных металлов, таких как кобальт, марганец, медь и никель, соединений AIIIBV-типа, а также легированных, стеклообразных полупроводников, таких как кремний и германий, и некоторых других веществ. Примечательны позисторы из твердых растворов на базе титаната бария.
Терморезисторы в целом можно классифицировать на:
- Низкотемпературного класса (рабочая температура ниже 170 К);
- Среднетемпературного класса (рабочая температура от 170 К до 510 К);
- Высокотемпературного класса (рабочая температура от 570 К и выше);
- Отдельный класс высокотемпературных (рабочая температура от 900 К до 1300 К).
Все эти элементы, как термисторы, так и позисторы, могут работать при разнообразных климатических внешних условиях и при существенных физических внешних и токовых нагрузках. Однако в жестких термоцикличных режимах, со временем меняются их исходные термоэлектрические характеристики, как то номинальное сопротивление при комнатной температуре и температурный коэффициент сопротивления.
Встречаются и комбинированные компоненты, например терморезисторы с косвенным нагревом . В корпусах таких приборов размещены сам и терморезистор и гальванически изолированный нагревательный элемент, задающий исходную температуру терморезистора, и, соответствующим образом, его начальное электрическое сопротивление.
Данные приборы применяются в качестве переменных резисторов, управляемых напряжением, приложенным к нагревательному элементу терморезистора.
В зависимости от того, как выбрана рабочая точка на ВАХ конкретного компонента, определяется и режим работы терморезистора в схеме. А сама ВАХ связана с конструктивными особенностями и с приложенной к корпусу компонента температурой.
Для контроля за вариациями температур и с целью компенсации динамически меняющихся параметров, таких как протекающий ток и приложенное напряжение в электрических цепях, изменяющихся вслед за изменениями температурных условий, применяют терморезисторы с выставлением рабочей точки на линейном участке ВАХ.
Но рабочая точка выставляется традиционно на спадающем участке ВАХ (NTC-термисторы), если термистор применяется, например, в качестве пускового устройства, реле времени, в системе отслеживания и измерения интенсивности СВЧ-излучения, в системах пожарной сигнализации, термического контроля, в установках управления расходом сыпучих веществ и жидкостей.
Наиболее популярны сегодня среднетемпературные термисторы и позисторы с ТКС от -2,4 до -8,4 % на 1 К . Они работают в широком диапазоне сопротивлений от единиц Ом до единиц мегаом.
Встречаются позисторы с относительно малым ТКС от 0,5% до 0,7% на 1 К, изготовленные на базе кремния. Их сопротивление изменяется практически линейно. Подобные позисторы широко применяются в системах температурной стабилизации и в системах активного охлаждения силовых полупроводниковых ключей в разнообразных современных электронных приборах, особенно — в мощных. Эти компоненты легко вписываются в схемы и не занимают много места на платах.
Типичный позистор имеет форму керамического диска, иногда в одном корпусе устанавливаются последовательно несколько элементов, но чаще — в одиночном исполнении в защитном покрытии из эмали. Позисторы часто применяют в качестве предохранителей для защиты электрических схем от перегрузок по напряжению и току, а также в качестве термодатчиков и автостабилизирующих элементов, в силу их неприхотливости и физической устойчивости.
Термисторы широко применяются в многочисленных областях электроники, особенно там, где важен точный контроль за температурным процессом. Это актуально для аппаратуры передачи данных, компьютерной техники, высокопроизводительных ЦПУ и промышленного оборудования высокой точности.
Один из простейших и весьма популярных примеров применения термистора – эффективное ограничение пускового тока. В момент подачи напряжения к блоку питания от сети, происходит чрезвычайно резкий заряд конденсатора значительной емкости, и в первичной цепи протекает большой зарядный ток, способный сжечь диодный мост.
Этот ток здесь и ограничивается термистором, то есть данный компонент схемы изменяет свое сопротивление в зависимости от проходящего по нему тока, поскольку в соответствии с законом Ома происходит его нагрев. Термистор после этого восстанавливает свое исходное сопротивление, через несколько минут, как только остынет до комнатной температуры.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Источник: www.electricalschool.info
8.2.1. Принцип действия позисторов
Позистор – это полупроводниковый терморезистор с положительным температурным коэффициентом сопротивления.
В массовом производстве позисторы делают на основе керамики из титаната бария. Титанат бария BaTiO3 – диэлектрик с удельным сопротивлением при комнатной температуре 10 10 …10 12 Ом . см, что значительно превышает удельное сопротивление полупроводников. Если же в состав керамики из титаната бария ввести примеси редкоземельных элементов (лантана, церия или др.) либо других элементов (ниобия, тантала, сурьмы, висмута и т.п.), имеющих валентность, большую, чем у титана, и ионный радиус, близкий к радиусу иона титана, то это приведет к уменьшению удельного сопротивления до 10…10 2 Ом . см, что соответствует удельному сопротивлению полупроводниковых материалов.
Полупроводниковый титанат бария обладает аномальной температурной зависимостью удельного сопротивления: в узком диапазоне температур при нагреве выше точки Кюри удельное сопротивление полупроводникового титаната бария увеличивается на несколько порядков.
Механизм электропроводности полупроводникового титаната бария при наличии примесей можно представить следующим образом. Примесь редкоземельного элемента (например, лантана) замещает в узле кристаллической решетки барий. Часть атомов титана, поддерживая электрическую нейтральность всего кристалла, захватывает лишние валентные электроны лантана, имеющего большую валентность, чем валентность бария. Захватываемые электроны, находясь в квазиустойчивом состоянии, легко перемещаются под действием электрического поля и обусловливают электропроводность материала.
В полупроводниковом титанате бария существуют четырехвалентные и трехвалентные ионы титана. Между разновалентными ионами титана может происходить обмен электронами. При этом каждый ион титана становится то трех-, то четырехвалентным. Этот процесс является причиной электропроводности титаната бария.
Появление полупроводниковых свойств в ионных кристаллах под влиянием примесей наблюдается также и для оксида никеля. Полупроводники, изготовляемые подобным методом, иногда называют полупроводниками с управляемой валентностью.
Технология изготовления позисторов аналогична технологии изготовления изделий из других керамических материалов. После смешивания исходных компонентов и веществ, содержащих примесные элементы, проводят первичный обжиг этой смеси при температуре около 1000 °С. Полученную твердую массу измельчают, а затем формуют заготовки. Вторичный обжиг производят при температуре 1300…1400 °С.
В результате, резистивный слой позистора состоит из большого числа контактирующих между
собой зерен или кристаллитов полупроводникового титаната бария. Сопротивление позистора зависит от сопротивлений обедненных поверхностных слоев на зернах. Высота поверхностных потенциальных барьеров оказывается малой при температурах ниже точки Кюри, когда в зернах существует спонтанная поляризация и материал обладает очень большой диэлектрической проницаемостью.
При температурах, больших точки Кюри, титанат бария претерпевает фазовое превращение из сегнетоэлектрического в параэлектрическое состояние. При этом пропадает спонтанная поляризация, резко уменьшается диэлектрическая проницаемость, растет высота поверхностных потенциальных барьеров на зернах и увеличивается сопротивление позистора (рис. 8.3).
Участок роста сопротивления зависит от точки Кюри керамики. Точка Кюри титаната бария может быть смещена в сторону низких температур путем частичного замещения бария стронцием. И наоборот, точка Кюри может быть смещена в сторону больших температур частичной заменой бария свинцом.
Уменьшает точку Кюри и частичная замена титана цирконием, оловом или самарием. Такое регулирование позволяет создавать позисторы, у которых положительный температурный коэффициент сопротивления наблюдается в разных диапазонах температур.
Иногда для создания позисторов используют монокристаллические кремний, германий и другие полупроводниковые материалы. Принцип действия таких позисторов основан на уменьшении подвижности носителей заряда с увеличением температуры
Источник: electrono.ru