В разделе рассмотрены электронно-лучевые трубки, наиболее широко используемые для отображения в компьютерной графике — черно-белые и цветные электронно-лучевые трубки (кинескопы).
0.7.1 Черно-белые кинескопы
Наиболее просто устроена черно-белая электронно-лучевая трубка (рис. 0.7.1а). Нагретый катод испускает электроны, которые проходят через модулятор, управляющий яркостью и фокусируются фокусирующими электродами, так, чтобы пятно на экране было порядка 0.1 — 0.3 мм. Далее электронный пучок отклоняется отклоняющей системой.
Для черно-белых трубок дисплеев обычно используется электромагнитное отклонение с помощью катушек, надетых на горловину кинескопа, но используется и электростатическое отклонение с помощью отклоняющих пластин, как это показано на рис. 0.7.1б. Отклоненный пучок попадает на внутреннюю поверхность колбы, покрытую сплошным слоем люминофора, и вызывает его свечение. Ускоряющее напряжение для таких кинескопов » 10 Кв, ток пучка » 10 мка. При диаметре пятна » 0.25 мм выделяемая мощность » 150 Вт/см 2 (электроплитка » 7 Вт/см 2 ).
Подключил электронную пушку-осциллографическую трубку.Опыты с магнитом
Пространственное разрешение таких ЭЛТ определяется диаметром пятна и составляет 3-10 точек/мм (85-250 точек/дюйм).
Адресное разрешение определяется уже схемотехническими решениями разработчиков дисплея и составляет для пользователей обычно 1024 пиксела по горизонтали (10 разрядов). Для уменьшения эффектов ступенчатости внутри цифровых систем разверток векторных дисплеев используется 11 или 12 разрядов.
б) Электростатическая отклоняющая система
0.7.2 Цветные кинескопы
Устройство цветных кинескопов подобно устройству черно-белых с тем отличием, что обязательно имеется три типа люминофора для красного, зеленого и синего цветов, а также средств для формирования и управления тремя отдельными электронными лучами (в некоторых, скорее экспериментальных цветных кинескопах используется единственный электронный луч).
Первый цветной масочный кинескоп с тремя отдельными электронными пушками, установленными друг относительно друга под 120 ° был разработан в США в 1950 г (кинескоп с дельта-образным расположением пушек). На рис. 0.7.2-0.7.5 иллюстрируется устройство такого кинескопа.
Основные параметры таких кинескопов следующие: Uанода » 20 ё 25 Кв, I S » 1.5 ё 2 ма диаметр пятна » 0.25 мм P » 2000 Вт/см 2 .
Проблемы цветных масочных кинескопов
Основными проблемами цветных масочных кинескопов, определившими необходимость разработки альтернативных конструкций кинескопов, являются следующие:
· большие напряжения и токи,
· малая яркость (на экран из-за маски попадает ~ 20% электронов),
· малый срок службы,
· недостаточно высокая чистота цвета — однородность свечения экрана по каждому цвету в отдельности,
· статическое сведение лучей,
· динамическое сведение лучей,
· статический и динамический балансы белого.
Кинескопы с планарным расположением пушек
В настоящее время наиболее массовым типом цветного кинескопа является т.н. планарный кинескоп (рис. 0.7.6), называемый также кинескопом со штриховым люминофором, или кинескопом с щелевой маской (PIL — Precision In Line). У таких кинескопов все электроды электронно-оптической системы кроме катодов — общие. Требуется прецизионное изготовление и сборка всех узлов трубки.
Как сделать элт для телевизора
Достоинства планарных кинескопов:
· б’ольшая прозрачность маски,
· б’ольшее заполнение экрана люминофором,
· б’ольшая яркость и меньшее энергопотребление,
· до углов отклонения в 90 ° не нужно динамическое сведение лучей.
Трехлучевой тринитрон
Подобен планарному кинескопу (рис. 0.7.7), но имеется один, а не три катода. Отдельные лучи формируются диафрагмами. Используется цилиндрическая щелевая маска. Применяется в малогабаритных устройствах.
Характерная особенность изображений на тринитронах — тонкий горизонтальный штрих на примерно 1/3 высоты экрана, вызванный конструктивными особенностями.
Трехлучевой хроматрон — США, 1951 г.
Основные проблемы любого масочного кинескопа — потеря части электронов на маске в результате чего понижается яркость свечения. Этот недостаток практически полностью устранен в трех- и однолучевых хроматронах и индексных кинескопах. В трехлучевом хроматроне (рис. 0.7.8) лучи отклоняются тонкой фокусирующей сеткой.
Одной триаде из RGB полосок люминофора соответствует одна проволока фокусирующей сетки.
Для поддержания высокой чистоты цвета требуется пять электромагнитных катушек:
· один охватывает весь экран,
· четыре — по углам экрана.
Яркость хроматрона выше чем у любого масочного кинескопа.
Недостатки: сложная система поддержания чистоты цвета, меньшее разрешение, требуется высокая стабилизация питания.
Однолучевой хроматрон
Несколько более простую конструкцию по сравнению с трехлучевым хроматроном имеет однолучевой хроматрон (рис. 0.7.9). Но как видно из рисунка требуется втрое более скоростная система управления отклоняющими напряжениями на сетке.
Все остальные конструктивные особенности, достоинства и недостатки у однолучевого хроматрона соответствуют таковым для трехлучевого.
Индексный кинескоп
Наиболее точное управление лучом обеспечивается в индексном кинескопе (рис. 0.7.10).
На внутреннюю поверхность экрана колбы (см. рис. 0.7.10) нанесены вертикальные полоски триад люминофора, разделенные индексными полосками, излучающими в ультрафиолетовом диапазоне внутрь колбы. Излучение принимается датчиком. Таким образом точно известно положение луча по горизонтали.
В зависимости от положения луча его ток модулируется напряжением для красного, зеленого или синего цветов (UR, UG или UB).
Недостатки индексного кинескопа следующие:
· сложность поэлементной коммутации цветов,
· высокая линейность строчной развертки,
· более низкие яркость, контрастность, четкость.
0.7.3 Разрешение мониторов
Число строк на мониторе с растровым сканированием зависит от расстояния наблюдения и остроты зрения человека. Для получения хорошего качества и меньшего утомления глаза человека число строк должно быть таким, чтобы при наблюдении с выбранного расстояния отдельные строки не были различимы.
Пусть с расстояния L две смежных строки видны под углом f (рис. 0.7.11), в этом случае выполняется соотношение:
Важным параметром в определении числа строк является отношение высоты экрана H к расстоянию до глаза L. Имеется оптимальное отношение. Если расстояние мало, глаз не видит весь объект. Напротив, при большом расстоянии становятся неразличимыми детали. При формате кадра 4:3 1 оптимальное расстояние наблюдения составляет 4. 6 высот экрана. Таким образом получаем, что оптимальное число строк составляет от 416 до 625.
Кроме психофизиологических условий разрешение мониторов определяется технологией изготовления. Для цветного кинескопа разрешение определяется расстоянием h между пятнами люминофора одного и того же цвета (рис. 0.7.12). Для современных кинескопов это расстояние равно 0.26 мм.
0.7.4 Люминофоры
Экран электронно-лучевых трубок покрывается изнутри люминофором, который излучает свет при падении на него электронного луча (флуоресценция). После выключения луча излучение продолжается еще некоторое время (фосфоресценция) (рис. 0.7.13). Время этого послесвечения является одним из важных параметров трубки, так как определяет как часто будет требоваться регенерация изображения, т.е. его повторный вывод для того чтобы пользователь видел немерцающую картину. Параметры некоторых люминофоров приведены в таблице 0.7.1.
0.7.5 Гамма-коррекция
Электронно-лучевые трубки мониторов обладают нелинейной зависимостью интенсивности свечения люминофора I от числа электронов в луче N. Упрощенно эта зависимость имеет вид:
где a и g — константы. Число электронов пропорционально напряжению U на управляющей сетке монитора, определяемому значением кода пиксела V, поэтому соотношение 0.7.1 может быть переписано в виде:
где k — константа, g зависит от U, I0 — паразитная засветка. Для упрощения полагают I0 = 0, а g — константой. У различных типов мониторов g меняется от 1.4 до 3.0. Для компьютерных мониторов значение g обычно принимают равным 2.5. Таким образом, если мы имеем соотношение между яркостями двух вычисленных пикселов V1 / V2 = 0.5, то на мониторе соотношение их яркостей будет равно 0.177.
Чтобы избежать искажений, используется гамма-коррекция входного сигнала. Для этого входное значение возводится в степень 1/ g и затем передается монитору.
На самом деле зависимости более сложные. Необходимо учитывать уровень освещения в комнате, где находится компьютер, яркость и контрастность, установленные на мониторе, и наконец субъективное восприятие пользователя.
Встроенные гамма-коррекции
Некоторые графические системы имеют встроенную аппаратную гамма-коррекцию, которая может регулироваться. Как правило, встроенная гамма-коррекция отличается от усредненного значения гаммы мониторов, равного 2.5 и близка к минимальному значению гаммы мониторов (см. выше). Дополнительная гамма-коррекция, требуемая для обеспечения верности воспроизведения, называется «системной».
Файл изображения может иметь свою собственную гамму, равную величине гамма-коррекции, использованной при формировании файла. Эта гамма-коррекция называется «файловой». Большинство растровых графических файлов, за исключением файлов TGA и PNG, не предусматривают сохранения «файловой гаммы», поэтому при воспроизведении может потребоваться ее подбор.
IBM PC и графические станции фирмы SUN не имеют встроенной гамма-коррекции, т.е. их системная гамма примерно равна 2.5. Поэтому для верного воспроизведения сигнал (значение кода пиксела) следует возводить в степень 1/2.5.
Графические станции фирмы Silicon Graphics имеют встроенную аппаратную гамма-коррекцию, равную 1.7, т.е. при посылке пиксела в буфер кадра его значение возводится в степень 1/1.7. Таким образом программное обеспечение должно само вначале отрегулировать сигнал возведением в степень 1/1.5 (2.5/1.7 ~ 1.5). Т.е. системная гамма для этих станций составляет 1.5.
Графические станции Макинтош имеют встроенную аппаратную гамма-коррекцию, равную 1.4. Таким образом для полной гамма-коррекции программное обеспечение должно само вначале отрегулировать сигнал возведением в степень 1/1.8 (2.5/1.4 ~ 1.8). Т.е. системная гамма для этих станций составляет 1.8.
Влияние гамма-коррекции на передачу цветов
Значения гаммы для различных мониторов могут быть различны для красного, зеленого и синего каналов. Кроме этого мониторы могут отличаться и по спектральным характеристикам люминофоров. Поэтому для обеспечения верности воспроизведения изображения, построенного на другом мониторе, может потребоваться подбор гаммы. Обычно это делается после оценки гаммы монитора с помощью калибровочных тестовых изображений.
Влияние значения гаммы на цветопередачу очевидно. Пусть, например мы имеем изображение цветного квадрата, построенного с использованием модели RGB (см. раздел 0.4) и вычисленным соотношением яркостей цветов равным 8:2:2. После воспроизведения на графической системе без гамма-коррекции мы получим соотношение, равное 32:1:1.
Все цветовые модели можно разделить на два типа — зависящие и не зависящие от системной гаммы. В таблице 0.7.2 приведена классификация некоторых из моделей цветов.
1 Формат кадра 4:3 выбран из тех соображений, что зона действия желтого пятна глаза составляет 8по горизонтали и 6 по вертикали. Объект, попадающий на желтое пятно, виден наиболее ясно и целиком, т.е. соотношение его сторон также должно быть порядка 4:3.
Знаете ли Вы, что cогласно релятивистской мифологии «гравитационное линзирование — это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника.» (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО — воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО — это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд — 10 11 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.
Источник: www.bourabai.ru
Схема электронно лучевой трубки телевизора
Техническая документация
сайт создан для оказания помощи в поисках документации по различным устройствам бытового и промышленного назначения
главная | мастерская | гостевая | контакты |
- Катоды
- Диоды
- Триоды
- Тетроды
- Пентоды
- Преобразовательные лампы
- Комбинированные приёмно-усилительные лампы
- Генераторные лампы
— Классы усиления
— Основные электрические параметры приёмно-усилительных и генераторных ламп - Стабилитроны
- Бареттеры
— Основные электрические величины стабилитронов и бареттеров - Газотроны
- Тиратроны
- Электронно-лучевые трубки и кинескопы
— Электрические величины электронно-лучевых трубок - Фотоэлементы
— Основные электрические величины фотоэлементов - Неоновые лампы
- Электронные лампы-вспышки
- Справочник по электронным приборам, 1963г
- Электровакуумные электронные и газоразрядные приборы (неполный)
ЭЛЕКТРОННО-ЛУЧЕВЫЕ ТРУБКИ И КИНЕСКОПЫ
Электронно-лучевые трубки предназначены для визуального наблюдения электрических процессов в измерительной аппаратуре; кинескопы— для наблюдения телевизионного изображения.
Электронно-лучевые трубки и телевизионные кинескопы разделяются на три вида: трубки с электростатическим отклонением и фокусировкой луча, трубки с магнитным отклонением и фокусировкой луча и трубки со смешанным управлением, в которых луч фокусируется, например, электрическим полем, а отклоняется — магнитным, либо наоборот. На рис. 1 показаны схемы включения электростатической и электромагнитной трубок.
- первый — число, указывающее величину диаметра или диагонали экрана, см;
- второй — буквы ЛО для осциллографических трубок и кинескопов с электростатическим отклонением и ЛК — для кинескопов с электромагнитным отклонением;
- третий — число, указывающее порядковый номер типа трубки; четвертый — буква, обозначающая тип люминофора экрана , Б — белый, Ц — цветной.
# Посещая рекламные объявления — Вы выражаете благодарность создателям сайта 🙂
Источник: tehnodoka.ru
Электронно-лучевые трубки
Электронно-лучевые трубки (ЭЛТ) – электровакуумные приборы, предназначенные для преобразования электрического сигнала в световое изображение с помощью тонкого электронного луча, направляемого на специальный экран, покрытый люминофором — составом, способным светиться при бомбардировке его электронами.
На рис. 15 показано устройство электронно-лучевой трубки с электростатической фокусировкой и электростатическим отклонением луча. В трубке имеется оксидный подогревный катод с эмиттирующей поверхностью, обращенной к отверстию в модуляторе. На модуляторе относительно катода устанавливается небольшой отрицательный потенциал.
Далее по оси трубки (и по ходу луча) располагается фокусирующий электрод, называемый также первым анодом, его положительный потенциал способствует вытягиванию электронов из прикатодного пространства через отверстие модулятора и формированию из них узкого луча. Дальнейшую фокусировку и ускорение электронов осуществляет поле второго анода (ускоряющего электрода).
Его потенциал в трубке наиболее положительный и составляет единицы – десятки киловольт. Совокупность катода, модулятора и ускоряющего электрода образует электронную пушку (электронный прожектор). Неоднородное электрическое поле в пространстве между электродами действует на электронный пучок как собирательная электростатическая линза.
Электроны под действием этой линзы сходятся в точку на внутренней стороне экрана. Экран изнутри покрыт слоем люминофора – вещества, преобразующего энергию потока электронов в свет. Снаружи место падения потока электронов на экран светится.
Для управления положением светящегося пятна на экране и тем самым получения изображения электронный луч отклоняют по двум координатам с помощью двух пар плоских электродов – отклоняющих пластин X и Y. Угол отклонения луча зависит от напряжения, приложенного к пластинам. Под действием переменных отклоняющих напряжений на пластинах луч обегает разные точки на экране. Яркость свечения точки зависит от силы тока луча. Для управления яркостью подают переменное напряжение на вход модулятора Z. Для получения устойчивого изображения периодического сигнала осуществляют его периодическую развертку на экране, синхронизируя линейно изменяющееся напряжение развертки по горизонтали X исследуемым сигналом, который одновременно поступает на пластины вертикального отклонения Y. Таким путем формируют изображения на экране ЭЛТ. Электронный луч обладает малой инерционностью.
Кроме электростатической, применяется и магнитная фокусировка электронного луча. Для нее используют катушку с постоянным током, в которую вставляют ЭЛТ. Качество магнитной фокусировки выше (меньше размер пятна, меньше искажения), однако магнитная фокусировка громоздкая и непрерывно потребляет энергию.
Широко применяется (в кинескопах) магнитное отклонение луча, осуществляемое двумя парами катушек с токами. В магнитном поле электрон отклоняется по радиусу окружности, и угол отклонения может быть существенно большим, чем в ЭЛТ с электростатическим отклонением. Однако быстродействие магнитной отклоняющей системы невысокое из-за инерционности катушек с током. Поэтому в осциллографических трубках применяют исключительно электростатическое отклонение луча как менее инерционное.
Экран является важнейшей частью ЭЛТ. В качестве электролюминофоров применяют различные неорганические соединения и их смеси, например, сульфиды цинка и цинка-кадмия, силикат цинка, вольфраматы кальция и кадмия и т.п. с примесями активаторов (меди, марганца, висмута и др.). Основные параметры люминофора: цвет свечения, яркость, сила света пятна, световая отдача, послесвечение. Цвет свечения определяется составом люминофора. Яркость свечения люминофора в Кд/м 2
где dn/dt – поток электронов в секунду, то есть, ток луча, А;
U0 — потенциал свечения люминофора, В;
U – ускоряющее напряжение второго анода, В;
Сила света пятна пропорциональна яркости. Световая отдача – это отношение силы света пятна к мощности луча в Кд/Вт.
Послесвечение – это время, в течение которого яркость пятна после выключения луча спадает до 1% первоначального значения. Различают люминофоры с очень коротким (менее 10 мкс) послесвечением, с коротким (от 10 мкс до 10 мс), средним (от 10 до 100 мс), длительным (от 0,1 до 16 с) и очень длительным (более 16 с) послесвечением. Выбор величины послесвечения определяется областью применения ЭЛТ. Для кинескопов применяют люминофоры с малым послесвечением, так как изображение на экране кинескопа непрерывно меняется. Для осциллографических трубок используют люминофоры с послесвечением от среднего до очень длительного, в зависимости от частотного диапазона подлежащих отображению сигналов.
Важный вопрос, требующий более подробного рассмотрения, связан с потенциалом экрана ЭЛТ. Когда электрон попадает на экран, он заряжает экран отрицательным потенциалом. Каждый электрон подзаряжает экран, и его потенциал становится все более отрицательным, так что очень быстро возникает тормозящее поле, и движение электронов к экрану прекращается.
В реальных ЭЛТ это не происходит, потому что каждый электрон, попавший на экран, выбивает из него вторичные электроны, то есть, имеет место вторично-электронная эмиссия. Вторичные электроны уносят с экрана отрицательный заряд, а для их удаления из пространства перед экраном внутренние стенки ЭЛТ покрыты проводящим слоем на основе углерода, электрически соединенным со вторым анодом. Для того, чтобы этот механизм работал, коэффициент вторичной эмиссии, то есть, отношение числа вторичных электронов к числу первичных, должно превышать единицу. Однако у люминофоров коэффициент вторичной эмиссии Квэ зависит от напряжения на втором аноде Ua. Пример такой зависимости изображен на рис. 16, откуда следует, что потенциал экрана не должен превышать величину
Ua max, иначе яркость изображения будет не увеличиваться, а уменьшаться. В зависимости от материала люминофора напряжение Ua max = 5…35 кВ. Для повышения предельного потенциала экран изнутри покрывают тонкой проницаемой для электронов пленкой металла (обычно алюминия – алюминированый экран), электрически соединенной со вторым анодом.
В этом случае потенциал экрана определяется не коэффициентом вторичной эмиссии люминофора, а напряжением на втором аноде. Это позволяет использовать более высокое напряжение второго анода и получать более высокую яркость свечения экрана. Яркость свечения возрастает также и из-за отражения света, излучаемого вовнутрь трубки, от алюминиевой пленки. Последняя прозрачна лишь для достаточно быстрых электронов, поэтому напряжение второго анода должно превышать 7…10 кВ.
Срок службы электронно-лучевых трубок ограничивается не только потерей эмиссии катодом, как у других электровакуумных приборов, но также и разрушением люминофора на экране. Во-первых, мощность электронного луча используется крайне неэффективно.
Не более двух процентов ее превращаются в свет, в то время как более 98% лишь нагревают люминофор, при этом происходит его разрушение, выражающееся в том, что постепенно световая отдача экрана снижается. Выгорание происходит быстрее при увеличении мощности потока электронов, при снижении ускоряющего напряжения, а также более интенсивно в местах, на которые луч падает большее время.
Другой фактор, снижающий срок службы электронно-лучевой трубки, — это бомбардировка экрана отрицательными ионами, образующимися из атомов оксидного покрытия катода. Разгоняясь ускоряющим полем, эти ионы движутся к экрану, проходя отклоняющую систему. В трубках с электростатическим отклонением ионы отклоняются так же эффективно, как и электроны, поэтому попадают на разные участки экрана более или менее равномерно. В трубках с магнитным отклонением ионы отклоняются слабее из-за своей многократно большей массы, чем у электронов, и попадают, в основном, в центральную часть экрана, с течением времени образуя на экране постепенно темнеющее так называемое «ионное пятно». Трубки с алюминированным экраном гораздо менее чувствительны к ионной бомбардировке, так как пленка алюминия преграждает путь ионам к люминофору.
Наиболее широко применяются два типа электронно-лучевых трубок: осциллографические и кинескопы. Осциллографические трубки предназначены для отображения разнообразных процессов, представленных электрическими сигналами. Они имеют электростатическое отклонение луча, так как оно позволяет осциллографу отображать более высокочастотные сигналы.
Фокусировка луча также электростатическая. Обычно осциллограф используется в режиме с периодической разверткой: на пластины горизонтального отклонения от внутреннего генератора развертки поступает пилообразное напряжение с постоянной частотой (напряжение развертки), к пластинам вертикального отклонения прикладывается усиленное напряжение исследуемого сигнала. Если сигнал периодический и его частота в целое число раз превышает частоту развертки, на экране возникает неподвижный график сигнала во времени (осциллограмма). Современные осциллографические трубки по конструкции сложнее, чем изображенная на рис. 15, они имеют большее количество электродов, применяются также двухлучевые осциллографические ЭЛТ, имеющие двойной комплект всех электродов при одном общем экране и позволяющие отображать синхронно два разных сигнала.
Кинескопы представляют собой ЭЛТ с яркостной отметкой, то есть, с управлением яркостью луча путем изменения потенциала модулятора; они применяются в бытовых и промышленных телевизорах, а также мониторах компъютеров для преобразования электрического сигнала в двумерное изображение на экране. От осциллографических ЭЛТ кинескопы отличаются большими размерами экрана, характером изображения (полутоновое на всей поверхности экрана), применением магнитного отклонения луча по двум координатам, относительно малым размером светящегося пятна, жесткими требованиями к стабильности размеров пятна и линейности разверток.
Наиболее совершенными являются цветные кинескопы для мониторов компъютеров, они имеют высокое разрешение (до 2000 строк), минимальные геометрические искажения растра, правильную цветопередачу. В разное время выпускались кинескопы с размером экрана по диагонали от 6 до 90 см.
Длина кинескопа по его оси обычно немного меньше размера диагонали, максимальный угол отклонения луча 110…116 0 . Экран цветного кинескопа изнутри покрыт множеством точек или узких полос из люминофоров разных составов, преобразующих электрический луч в один из трех основных цветов: красный, зеленый, голубой. В цветном кинескопе три электронные пушки, по одной на каждый основной цвет.
При развертке по экрану лучи перемещаются параллельно и засвечивают соседние участки люминофора. Токи лучей разные и зависят от цвета получаемого элемента изображения. Кроме кинескопов для непосредственного наблюдения, существуют проекционные кинескопы, имеющие при небольших размерах высокую яркость изображения на экране. Это яркое изображение затем проецируют оптическими средствами на плоский белый экран, получая изображение большого размера.
Источник: studopedia.su