Стабилизатор напряжения для телевизора схема

Практически каждый электронный прибор требует для своей работы питания. Одни схемы некритичны к величине и стабильности питающего напряжения, но большинство все же требует для своей работы напряжений строго заданной величины. Сегодня мы поговорим о простых стабилизаторах и разберемся, какими они бывают и как работают.

Простейший параметрический

В основу параметрических стабилизаторов положено свойство сильной нелинейности вольтамперной характеристики (ВАХ) некоторых полупроводниковых приборов. Рассмотрим принцип работы простейшего параметрического стабилизатора, собранного на стабилитроне.

Параметрический стабилизатор напряжения на стабилитроне

Как известно, стабилитрон имеет участок ВАХ, на котором напряжение на полупроводнике почти не зависит от тока через него. Нижний порог этого участка называют Iст. min, верхний – Iст.max. При подаче на схему напряжения питания Uвх, через стабилитрон начинает течь ток, который задается токоограничивающим (балластным) резистором R1. Если он находится в пределах Iст. min — Iст. max, то на выводах стабилитрона установится определенное напряжение Uст, которое зависит от типа полупроводникового прибора.

Стабилизатор из СССР

При подключении нагрузки (на схеме для наглядности ее роль исполняет резистор R2) ситуация несколько меняется. Ток, протекающий через балластный резистор, делится. Часть его продолжает течь через стабилитрон, часть питает нагрузку. В результате ток через стабилитрон уменьшается и при достаточно мощной нагрузке может упасть ниже пределах Iст. min.

В этом случае полупроводник выйдет из режима стабилизации и перестанет исполнять свои функции. Таким образом, подобные схемы годятся лишь для питания маломощных устройств, потребляющих единицы, максимум несколько десятков миллиампер. Их используют, к примеру, для получения опорных напряжений.

Вполне очевидно, что напряжение Uвх должно быть выше Uст. В противном случае стабилитрон не сможет выйти на рабочий режим. Обычно величину Uвх выбирают не менее чем на 3-5 В выше Uст.

А теперь попробуем собрать практическую схему стабилизатора на 12 В, используя стабилитрон КС512А. Смотрим на его характеристики:

  • Uст – 12 В (при токе Iст. 5 мА);
  • Iст.min – 1 мА;
  • Iст.max – 67 мА.

Входное напряжение выберем равным 15 В. Ток через стабилитрон с отключенной нагрузкой выберем как можно ближе к максимальному, но с некоторым запасом – 50 мА. Запас этот нужен на случай, если входное напряжение повысится – оно ведь нестабилизированное. Исходя из этого, рассчитываем номинал балластного резистора по формуле:

R=(Uвх- Uвых)/Iстаб

  • R — сопротивление балластного резистора R1, Ом;
  • Uвх — входное напряжение, В;
  • Uвых — выходное напряжение, В;
  • Iстаб — ток через стабилитрон, А.

Включаем калькулятор и считаем: R1=(15-12)/0.05=60 Ом. Какой ток в нагрузку сможет отдать такая схема? Как мы выяснили, при подключении нагрузки ток через балластный резистор будет составлять Iбал=Iстаб+Iнагр, а значит, Iстаб=Iбал–Iнагр. Нижний передел режима стабилизации выбранного нами полупроводника – 1 мА. Значит, наш стабилизатор сможет отдать в нагрузку порядка 40-45 мА.

При этом ток через стабилитрон упадет до 5-10 мА. Дальнейшее повышение Iнагр приведет к еще большему уменьшению Iстаб, что может вызвать неустойчивую работу стабилитрона, скажем, при уменьшении входного напряжения, которое, как мы помним, нестабилизировано.

Включаем калькулятор и считаем: R1=(15-12)/0.05=60 Ом.

Значит, наш стабилизатор сможет отдать в нагрузку порядка 40-45 мА. При этом ток через стабилитрон упадет до 5-10 мА. Дальнейшее повышение Iнагр приведет к еще большему уменьшению Iстаб, что может вызвать неустойчивую работу стабилитрона, скажем, при уменьшении входного напряжения, которое, как мы помним, нестабилизировано.

На самом деле все на так просто, поскольку напряжение стабилизации стабилитрона зависит от тока через него. Не особо сильно, но зависит. При динамичной и особенно большой нагрузке напряжение на выходе нашей схемы станет существенно изменяться и будет мало похоже на стабильное. Таким образом, более-менее нормальную работу такого стабилизатора можно получить при отдаче в нагрузку много меньших токов – 1-2 десятка мА.

Параметрический с транзисторным ключом

В предыдущем разделе мы выяснили, что простейший стабилизатор имеет существенный недостаток – он не может обеспечить питанием более-менее мощную нагрузку. Кроме того, коэффициент стабилизации (зависимость выходного напряжения от входного) у предыдущей схемы относительно небольшой. Выйти из положения можно при помощи дополнительного элемента – транзистора.

Еще по теме:  32 80 см телевизор LED LG 32lq630b6la черный

Источник: dzen.ru

Релейный стабилизатор напряжения 220V без разрыва цепи

В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

↑ Идея

Встретил в интернете рекламу на сайте ООО «Прибор», г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.
Приведены картинки переключений (слева «Селен», справа — с обычными характеристиками)

Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке «Украина» тоже было безразрывное переключение напряжения — там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением № 2356082 я не смог.

Мне удалось найти статью «Типы стабилизаторов напряжения», где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги — контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.

На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

↑ Принципиальная схема


Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10.
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1. Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 — усилители для реле.
Реле Р1 и Р2 — основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт , включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный — низкое, зеленый — норма, синий — высокое.

↑ Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676.
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

Еще по теме:  Младенец 2 месяца смотрит телевизор

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on, R2off, R1on и R1off.
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

↑ Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

↑ Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт , что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1, а вспомогательные LIMING JZC — 22F.
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).



Прибор повешен на стене и закрыт кожухом из жести


↑ Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР’а через лампу накаливания мощностью 100 — 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки «Стабилизатор напряжения сети на PIC12F675 (релейный) 1,8 кВт». Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).

↑ Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

↑ Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле — вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

↑ Использованы источники

1. Статья «Типы стабилизаторов напряжения» на сайте «Энергосбережение в Украине»
2. Официальный web-сайт предприятия ООО «Прибор», г. Челябинск
3. Даташиты на детали

↑ Файлы

Схема, чертеж печатной платы и программа с прошивкой
Shema.zip 211.09 Kb ⇣ 206

Наш файловый сервис предназначен для полноправных участников сообщества «Datagor Electronics».

Для получения файла зарегистрируйтесь и войдите на сайт с паролем.


Plata.zip 24.09 Kb ⇣ 182

Наш файловый сервис предназначен для полноправных участников сообщества «Datagor Electronics».

Для получения файла зарегистрируйтесь и войдите на сайт с паролем.


Soft_V4.zip 4.97 Kb ⇣ 204

Наш файловый сервис предназначен для полноправных участников сообщества «Datagor Electronics».

Еще по теме:  Что такое 750 телевизоре

Для получения файла зарегистрируйтесь и войдите на сайт с паролем.


Схема стабилизатора LOGIC POWER MVR 5K(relay) LPS-1500RV без микроконтроллеров 427.96 Kb ⇣ 46

Наш файловый сервис предназначен для полноправных участников сообщества «Datagor Electronics».

Для получения файла зарегистрируйтесь и войдите на сайт с паролем.

Иван Внуковский,
Украина, г. Днепропетровск

Источник: datagor.ru

Схема стабилизатора напряжения 220В для дома, принцип работы, монтаж

Стабилизатор напряжения 220В крупным планом

Как самостоятельно сделать стабилизатор напряжения 220В для дома — необходимые комплектующие и инструменты, схема, алгоритм сборки, видео.

  1. Принцип работы
  2. Схема, комплектующие и инструменты
  3. Монтаж

Избежать неприятностей поможет использование специального оборудования. Но поскольку оно стоит недешево, многие предпочитают собирать стабилизатор напряжения для дома своими руками. Насколько оправдан такой шаг и что потребуется для его реализации? Об этом и поговорим!

Стабилизатор напряжения 220В — принцип работы

Рабочие элементы стабилизатора напряжения 220В

Стабилизатор напряжения состоит из нескольких основных деталей:

  1. Трансформатора.
  2. Конденсаторов.
  3. Резисторов.
  4. Кабеля для соединения элементов и подключения устройства.

Классификация оборудования зависит от методов, используемых для регулировки тока. Поскольку эта величина представляет собой направленное движение частиц, то воздействовать на нее можно несколькими способами:

    Механическим. Он основывается на законе Ома. Приборы, работа которых основана на нем называют линейными. Они включают в себя два колена, которые соединяются при помощи реостата. Поданное на один элемент напряжение проходит по реостату и таким образом оказывается на другом, с которого поступает к потребителям.

Приборы этого типа позволяют очень точно выставлять параметры выходного тока и могут быть модернизированы дополнительными узлами. Но использовать такие стабилизаторы в сетях, где разница между входным и выходным током велика нельзя, так как они не смогут обезопасить бытовую технику от КЗ при больших нагрузках.

Также стабилизаторы напряжения делятся на:

  • однофазные;
  • трехфазные.
  • Ранее мы рассматривали, как сделать стабилизатор напряжения 12 вольт

Схема стабилизатора напряжения 220В для дома, комплектующие и инструменты

Подробная схема стабилизатора напряжения 220В

Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • блок питания;
  • выпрямитель для измерения амплитуды напряжения;
  • компаратор;
  • контроллер;
  • усилители;
  • светодиоды;
  • узел задержки включения нагрузки;
  • автотрансформатор;
  • оптронные ключи;
  • выключатель-предохранитель.

Стабилизатор напряжения 220В для дома — монтаж

Чтобы собрать стабилизатор напряжения 220В для дома своими руками, сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.

Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:

  • магнитопровод площадью сечения 1,87 кв. см;
  • три кабеля ПЭВ-2.

Два оставшихся провода потребуются для выполнения двух других обмоток. Они отличаются от первого сечением 0,185 мм. Количество витков для этих обмоток — 522.

Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.

Если делать их самостоятельно, то для второго будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.

  • Смотрите схему регулятора мощности 220 В

Схема соединения двух трансформаторов

Соединение двух трансформаторов

Все остальные комплектующие для прибора, создаваемого своими руками, лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке:

    Начинаем с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 кв. см.

Если же сравнивать надежность стабилизатора напряжения 220В, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать производительную модель практически невозможно, так как нет специального измерительного оборудования.

  • Возможно, вас также заинтересует самодельный стабилизатор напряжения для газового котла

Видео с пошаговым монтажом стабилизатора напряжения 220В для дома:


Источник: tehnoobzor.com

Оцените статью
Добавить комментарий