Своими руками зарядное с телевизором

Регулируемый блок питания — полезная и нужная вещь для каждого электронщика.

В сегодняшней статье мы расскажем, как смастерить его своими руками из обычного зарядного устройства для телефона.

ice screenshot 20220106 203308

Сделать такое устройство в домашних условиях можно в течение 10—15 минут. Причем это под силу даже новичку!

  • зарядное устройство с USB-разъемом (технические характеристики — 5 V и 2 А);
  • переменный резистор на 100 кОм;
  • 2 конденсатора номиналом 470 мкФ.

Обратите внимание: максимально допустимое рабочее напряжение используемых конденсаторов должно быть в пределах 35 V.

ice screenshot 20220106 210804

Процесс изготовления блока питания

В первую очередь «вооружаемся» подходящей отверткой. Нам необходимо будет разобрать зарядное устройство для телефона.

Зарядное для автомобильного аккумулятора своими руками

После того как выкрутили винтики, аккуратно разбираем пластиковый корпус и извлекаем из него плату с радиодеталями.

ice screenshot 20220106 211848

ice screenshot 20220106 211900

Из всех установленных на плате элементов нас интересует конкретно только одна деталь — интегральная микросхема регулируемого стабилизатора напряжения. В нашем случае это микросхема с маркировкой TL 431.

ice screenshot 20220106 213444

В принципе, это довольно распространенная микросхема, поэтому она встречается во многих зарядниках.

Обратите внимание : напряжение на выходе микросхемы TL 431 определяется по формуле, приведенной на картинке ниже, и находится в диапазоне от 2,5 до 36 V.

ice screenshot 20220106 214827

Путем изменения величины отношения резисторов R5 и R6 , можно регулировать напряжение на выходе всего блока питания.

Чтобы сделать из зарядного устройства регулируемый блок питания, для начала необходимо установить вместо постоянного резистора R5 переменный резистор на 100 кОм. Путем изменения его сопротивления можно будет регулировать напряжение на выходе блока питания.

Выпаиваем резистор R5. С обратной стороны платы вместо выводов удаленного резистора необходимо припаять два провода.

Автомобильный зарядник для аккумулятора из Телевизора

ice screenshot 20220106 215242

К проводам припаиваем переменный резистор: красный провод к левому выводу, а черный провод — к центральному.

Советуем к прочтению: Эксперимент: могут ли дроссели проводить электрический ток

ice screenshot 20220106 215929

На следующем этапе надо будет заменить заводские конденсаторы.

ice screenshot 20220106 220128

Они имеют номинал 470 мкФ, но рассчитаны на максимальное напряжение 10 V. Вместо них мы устанавливаем конденсаторы такого же номинала, но рассчитанные уже на максимальное напряжение 35 V.

ice screenshot 20220106 220646

Самодельный регулируемый блок питания готов.

Устанавливаем плату обратно в корпус зарядного устройства. Дополнительно в нем нужно будет высверлить отверстие для ручки переменного резистора и устанавливаем барашек с наружной стороны.

ice screenshot 20220106 220855

Как вам статья?

Источник: radio-blog.ru

Самодельный источник питания USB в машине

Самодельный источник питания USB в машине

Во многих современных автомобилях есть модули с несколькими USB выходами для питания. По большому счету несколько гнёзд USB необходимы в любой машине, ведь так часто приходится заряжать телефон, планшет, фотоаппарат, а ещё же нужно подключить навигатор и регистратор.

Уже давно пора в автомобиле сделать аккуратную панель с гнёздами USB. А самостоятельно собрать источник питания USB совсем не сложно и не затратно, даже на мотоцикл .

Чтобы собрать источник питания USB вам потребуется как минимум:

  1. микросхемный стабилизатор напряжения в 5 В;
  2. два конденсатора: оба на 25 В или только один, а другой на 10 В (значения ёмкостей конденсаторов зависят от выбранного стабилизатора, и будут определены позже);
  3. полупроводниковый диод на 1 А;
  4. гнезда типов: 1USB-А или 2USB-А;
  5. соединительные провода небольшого сечения – не более 0,5 мм.кв.
  • способны работать в широких пределах входных напряжения 7 – 20 В;
  • имеют систему защиты от перегрузки по току;
  • снабжены системой защиты от перегрева, которая при нагреве кристалла микросхемы ограничивает выходной ток.
Еще по теме:  Покупка телевизора на озон отзывы покупателей

Один разъем USB можно запитать от стабилизатора 78L05: Imax =0,1 А, Pmax =0,5 Вт, корпус ТО-92.

Два разъёма USB и более нужно подключать к питанию от стабилизаторов 78М05 или 7805.

Микросхема 78М05 имеет такие характеристики: Imax =0,5 А, Pmax =7,5 Вт, корпус ТО-202 или ТО-220.

Микросхема 7805: Imax =1,5 А, Pmax =10 Вт, корпус ТО-220.

Стабилизаторы серии 78 изготавливаются в таком корпусе, который делает их похожими на транзисторы.

  • первый слева вывод – вход (если смотреть на корпус со стороны маркировки);
  • средний – общий;
  • третий – выход.

Самодельный источник питания USB в машине

Самодельный источник питания USB в машине

У микросхем 78L05 распиновка обратная, чем у микросхем 78М05 и 7805.

При сборке схемы нужно учесть, что общий вывод микросхем 78М05 и 7805 соединён с их металлическим теплоотводом, поэтому при монтаже стабилизатора на радиатор не замкните остальные элементы схемы. А прикрутить микросхему к радиатору всё же желательно, потому что стабилизатор в этом случае будет работать лучше (вспомните то, что микросхемные стабилизаторы при перегреве ограничивают ток на нагрузке).

Полупроводниковый диод нужен для ограничения скачков тока при включении выключателей или контактов реле, через которые может быть подключена схема стабилизации.

Конденсаторы нужно поставить по 10 мкФ, а не по 47 мкФ, в случае если применять в схеме менее мощный стабилизатор 78L05, а не микросхемы 78М05 и 7805. По напряжению конденсаторы, как говорилось ранее, должны быть подобраны на 25 В каждый, или на выходе конденсатор можно поставить на 10 В.

Светодиод в качестве индикатора питания не обязателен, но помогает визуально определять наличие напряжение на выходе и исправность схемы стабилизации.

Резистор не обязательно ставить на 160 Ом, потому что при таком гасящем сопротивлении светодиод может слишком ярко светить. Гасящий резистор можно подбирать сопротивлениями: 270 Ом, 300 Ом, 470 Ом.

Собрав схему стабилизации напряжения нужно её подключить к гнезду USB: выход плюс 5 В – к контакту плюс напряжения питания USB; общий выход к – общему контакту разъёма.

  • первый слева контакт – общий (если смотреть на контакты разъёма сверху);
  • второй – плюс шины данных;
  • третий – плюс шины данных;
  • четвёртый – плюс напряжения питания.

Самодельный источник питания USB в машине

Конечно же, никакие данные передавать вы не будет, используя гнездо USB как источник питания, поэтому ни обращайте внимание на второй и третий контакты разъёма.

Где установить гнезда питания USB в машине это личное решение каждого мастера. Но в качестве рекомендации можно сказать, что удобно несколько разъёмов вместе с собранной схемой разместить на отдельной панели, вырезанной из пластмассовой или алюминиевой пластины. Также на этой небольшой консоле можно установить небольшой выключатель, который будет отключать напряжение на входе схемы стабилизации. Готовую панельку с разъёмами USB очень легко установить в удобном месте салона автомобиля.

Также рекомендую ознакомиться с распиновкой USB кабелей для других гаджетов.

Источник: volt-index.ru

Основные схемы импульсных сетевых адаптеров для зарядки телефонов

Diy Kit

Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.

Еще по теме:  Какой пульт подойдет к телевизору lumus

В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны — если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи — но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.

схемы импульсных сетевых адаптеров

Рис. 1
Простая импульсная схема блокинг-генератора

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт — тогда при перегрузке он сгорит, выполнив функцию предохранителя.

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора.

При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних — положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает. То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ — поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора — то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II — генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока — выходное напряжение гуляет в пределах 15. 25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2

Еще по теме:  Как улучшить звук на телевизоре LG

Схема сетевого адаптера

Рис. 2
Электрическая схема более сложного
преобразователя

Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор , резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 — как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении — 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным — идеально BYV26C, чуть хуже — UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250. 350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 — она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10. 20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому — для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II — 30 витков тем же проводом, обмотка III — 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник — стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.

  • Boss
  • Источники питания
  • 2015-12-26
  • 135 229

Источник: radiohata.ru

Оцените статью
Добавить комментарий