Телескоп в телевизоре это

Содержание

Телевизор б/у в хорошем состоянии. Без трещин и царапин. В рабочем состоянии. Качество изображения хорошее. Пульт в наличии. Телескоп 70см Ширина телевизора 73см Высота 57см Глубина с трубкой 48 Самовыаоз

Мы нашли это объявление 9 месяцев назад
Нажмите Следить и система автоматически будет уведомлять Вас о новых предложениях со всех досок объявлений

Новая жалоба

Отмена Отправить жалобу

Вид электроники Аудио и видео техника

Еще объявления

Б/У Состояние и комплектация на фото Полностью в рабочем состоянии Корпус с трещинами, на работоспособность не влияет О МАГАЗИНЕ МЫ НЕ ТОЛЬКО ПРОДАЕМ, ПОКУПАЕМ НО И БЕРЕМ НА РЕАЛИЗАЦИЮ ТОВАРЫ Покупаем антиквариат, предметы коллекционирования, офисную бумагу SvetoCopy Снегурочку Комус и другие, бытовую технику, кофемашины, телефоны, компьютеры и комплектующие, ноутбуки, музыкальное оборудование разных времен, оргтехнику, разбитые мониторы, не рабочую технику и многое другое. Задать вопросы и оценить предлагаемые предметы можете по телефону указанному в объявлении (WhatsApp привязан) В нашем магазине вы можете найти б.у. и новые товары Время работы: работаем без перерыва ПН-ПТ с 10:00 до 22:00 СБ с 11:00 до 22:00 ВС ВЫХОДНОЙ Адрес: г. Уфа ул. Ульяновых д. 27, ост. «Восьмиэтажка», комиссионный магазин «Заходи, если шо» Товар прошёл полную диагностику и предпродажную подготовку. Описание, цена и фотографии в объявлении соответствуют действительности. Если Вы читаете это объявление – значит товар в наличии! Доставка по России: производится только после 100% предоплаты товара, стоимость доставки рассчитывается согласно тарифам транспортных компаний и «Почты России». Порядочность гарантируем!

Аудио и видео техника
7 месяцев назад Источник

Телевизор б/у В хорошем состоянии Показывает хорошо, только слегка темно. Ширина телевизора 59см Ширина телескопа 42.5см Высота ТВ. 46см Высота телескопа 32см Глубина ТВ 48см Пульта нет

Аудио и видео техника
8 месяцев назад Источник

Продается ТВ, б/у, один раз ремонтировали , заменили лампу в телескопе, телевизор в рабочем состоянии, искаженный цвет изображение, с желтоватым оттенком

Аудио и видео техника
9 месяцев назад Источник

Всем Помните в детстве подбегали к включенному телевизору подставляли голову или руки и волосы вставали дыбом?! А родители нас отгоняли и ругали? А как же Сега Мега драйв 16 бит или денди? Родители ругали за то,что телескоп посадить можно! Ностальгия, правда? Вот этот телик реальная ностальгия!

Правда не советская «Заря»,но зато очень хороший импорт! И малому бегать не надо переключать каналы,ибо даже с ним в комплекте идёт рабочий и в прекрасном состоянии пульт! Так что, покупайте себе на дачу и смотрите в одно удовольствие!

Аудио и видео техника
10 месяцев назад Источник

Продаю телевизор Rolsen со встроенным DVD плейером и караоке на двоих в рабочем состоянии, за одним но.. поплыл телескоп, изображение хорошо видно только в одном углу красное с синим меняется цветом. DVD и караоке в исправном состоянии.

Аудио и видео техника
Телевизор Sony телескопный Работает исправно. Торг
Аудио и видео техника

нa фотo оригинaльныe игpы. цена от 1000р тaк же eсть пpиcтавки крoмe Cони пc3 игpы к ним и джoйcтики кaры памяти и шнуры. цeны нe xалявные! вce в идeалe кaк новыe! вышлю по РФ возможeн oбмен в тoм числе и с моей доплaтoй или вашей на радиодeтaли pадиoплаты Элeктpосaмокат рaции pадиостанции игpoвые пристaвки видеомaгнитофон ВМ 12 15 18 23 25 27 32 электроника видео Сатурн колонки магнитофон усилитель мощности проигрыватель виниловых пластинок эквалайзер измерительные приборы частотомер генератор сигналов вольтметр анализатор осциллограф ваттметр медицинский прибор и другие вещи велосипед ёлочные игрушки гирлянды приемник радиоприемник радиоприбор прибор СССР ЭВМ компьютер персональный игровой РФ СССР детали СССР транзистор микросхемы конденсатор переключатель различные электронные блоки платы детские игрушки игры игровые приставки игры комплектующие для ПК СССР РФ производства фото кинообьектив подзорные трубы бинокль телескоп монокль фотоаппарат СССР игровую приставку игры гири гантели штанга проигрыватель пластинок пластинки усилители мощности эквалайзер кассетные деки тюнер телевизор колонки радиостанции радиоприемники военные гражданские блок питания кабель антенны к радиостанции советские измерительные приборы осциллограф частотомер генератор сигналов ваттметр вольтметр измеритель анализатор регистрирующие приборы медицинские приборы видеомагнитофон вм12 18 23 27 электроника 508 пневматический сигнальный пистолет винтовка ёлочные игрушки гирлянды фарфоровые куклы чайники статуэтки вазы марки значки часы детские игрушки скутер велосипед радиоплаты радиодетали СССР РФ транзистор микросхема конденсатор резистор переключатель и др. Радиодетали измерит приборов, АТС ЭВМ Калькулятор ЭВМ компьютер СССР РФ ко.рт.и.к са.бл.я ш.аш.к.а шт.ы.кно.ж о.х.отн.ичьи принадлежности Электросамокат самовар награды иконы изделия из бронзы меди мельхиор МНЦ

Игровые приставки, игры, программы
Продам телевизор б/у. Включается, не работает телескоп, либо можно починить, либо на запчасти
Аудио и видео техника
Монитор, телевизор. Телескоп чёрно-белый.
Комьютерные аксессуары и комплектующие
Полностью рабочий, марка sanyo, диагональ 36 см
Аудио и видео техника

2 года назад Источник

Внимание! Festima.Ru является поисковиком по объявлениям с популярных площадок. Мы не производим реализацию товара, не храним изображения и персональные данные. Все изображения принадлежат их авторам Отказ от ответственности

Источник: festima.ru

Телескоп. Виды и устройство. Применение и как выбрать. Особенности

Телескоп. Виды и устройство. Применение и как выбрать. Особенности

Телескоп – оптический прибор для наблюдения за отдаленными объектами, чаще всего применяемый в астрологии для изучения ночного небосвода. Также может использоваться для увеличения и фотографирования космических объектов.

Еще по теме:  Отзывы о телевизорах с двд

История появления

Согласно историческим данным, первый телескоп был изготовлен ученым Галилео Галилеем в 1609 году. В основании своего прибора он использовал те же принципы, которые применялись при изготовлении мореплавательных подзорных труб. При этом ученый использовал более мощные линзы, предварительно высчитав их фокусировку для обеспечения усиливающего эффекта.

Как следствие окончательная версия его прибора могла увеличивать изображение в 20 раз. Именно Галилео Галилей придумал современное название своему прибору, кроме этого первым начал использовать оптическое оборудование для изучения космоса. Многие космические открытия были сделаны именно с помощью того первого телескопа. Сейчас данный прибор хранится в музее во Флоренции.

Muzeinyi eksponat teleskopa

Как устроен телескоп

Прибор в классическом исполнении представляет собой трубку, установленную на опорно-поворотном устройстве, так называемой монтировке телескопа. Монтировка удерживает трубку и позволяет проводить ее точное наведение на интересующий объект.

Оптической составляющей трубки прибора являются окуляр и объектив. Они обеспечивают визуальное увеличение изображения отдаленного объекта. Уровень увеличения напрямую зависит от фокусного расстояния между объективом и окуляром.

Механизм регулировки телескопа позволяет менять фокусное расстояние. Как следствие объект можно визуально приблизить с разной кратностью увеличения. Сначала он отыскивается на небосводе при минимальных настройках, а после наведения размер изображения повышается для лучшей детализации.

Уровень увеличения телескопа зависит от линз, установленных в качестве его объектива и окуляра. Естественно чем выше кратность, тем больше стоимость прибора. Более сложные телескопы классической конструкции состоят из набора линз. Они устанавливаются в трубку, каждая из которых усиливает кратность устройства.

Ustroistvo teleskopa

Виды телескопов по принципу действия и строению

Классическая схема устройства телескопа является простейшей. По сути, она не отличается от строения бинокля, зрительной трубы или микроскопа, но имеет большие линзы и другую фокусировку. Кроме нее было реализовано ряд прочих конструкций, используемых и сейчас.

Наиболее известными считаются следующие разновидности телескопов:
  • Диоптрические.
  • Катоптрические.
  • Комбинированные.
  • Радиотелескопы.
  • Инфракрасные.

Все они работают по разным принципам, имеют разную себестоимость производства и отличаются по кратности увеличения. Инфракрасные и радиотелескопы сугубо профессиональные научно-исследовательские устройства, остальные виды могут быть достаточно компактными для установки вне обсерватории, а в частном доме.

Диоптрические

Диоптрический телескоп – это классический оптический прибор с линзами. Принцип его работы заключается в том, что идущий от небесных тел свет собирается линзой объектива. Объектив или группа из линз всегда имеют выпуклую форму, поэтому проходящий сквозь них свет фокусируется в точку. Для того, чтобы человеческий глаз мог рассмотреть изображение, оно фокусируется на окуляр. Главное условие для работы прибора – это совпадение между фокусом объектива и окуляром.

Teleskopy dioptricheskie

Катоптрические

Телескопы данной конструкции также называются зеркальными. Их активной частью выступает вогнутое зеркало. На нем собирается свет от звезд или прочих космических объектов, и отражается на окуляр. Главное достоинство устройств данного типа – это полная передача спектра света.

У диоптрических приборов свет пройдя через линзу частично искажается, поэтому фактическое изображение не совсем соответствует реальности. Приборы зеркального типа показывают все детали увеличенного объекта, его цвет, яркость, глубину темных участков.

Teleskop katoptricheskii

Недостаток зеркальных телескопов в ограниченном обзоре. Они захватывают мало изображения, не позволяя рассмотреть всю картину целиком, как это делают оптические устройства. При этом катоптрические приборы дешевы в изготовлении, поэтому выпускаются в большем количестве, чем все остальные типы телескопов вместе взятые. Именно их обычно используют любители.

Комбинированные устройства

В данную группу приборов входят катадиоптрические телескопы. В их основании используются линзы и вогнутое зеркало. Устройства данного типа дают достаточно качественное изображение, при этом обладают большим углом обзора, чем обычные зеркальные телескопы.

Такие устройства разделяются еще на 2 основных подвида:
  • Шмидта-Кассегрена.
  • Максутова-Кассегрена.

Все они названы в честь своих изобретателей. Телескоп Шмидта-Кассегрена имеет в центре кривизны зеркала диафрагму. Такое решение позволяет добиться увеличения поля зрения. При этом исключается сферическое нарушение и отклонение.

Приборы, построенные по принципу Максутова-Кассегрена, имеют в районе фокальной плоскости оптическую линзу. Последняя обладает выпуклостью с одной стороны и является плоской на обороте. Это позволяет компенсировать кривизну поля и избежать сферического отклонения.

Радиотелескопы

Приборы этого класса стоят на много порядков выше, чем все предыдущие. Они никак не подходят для любительского наблюдения за космосом в связи со своими габаритами и дороговизной. Эти устройства разработаны исключительно для точных научных исследований. В их конструкции полностью отсутствуют оптические элементы для фиксации света космических объектов.

Эту функцию выполняют огромные антенны, фиксирующие космические сигналы в одной частоте. Диаметр такой антенны может составлять 25 м. Полученные из них данные передаются на компьютерное оборудование, которое превращает сигнал в зрительную картинку.

Radioteleskopy

Обычно антенны радиотелескопов объединены в сеть. При этом они могут располагаться в разных частях мира. Примером реализации подобных проектов является сеть VBA, работающая с 1993 года. Конкретно данная система может воспроизводить изображение любых объектов, яркостная температура которых превышает десять в шестой степени кельвинов. Антенны сети имеют огромное отдаление от базы, самая дальняя от них располагается за 8600 км.

Инфракрасные

Приборы данного типа воспринимают инфракрасное излучение от объектов. По сути, они реагируют на тепло. Благодаря большой чувствительности, устройства фиксируют ИК излучение, которое человеческая кожа даже близко не воспринимает.

Инфракрасное излучение отражается в объективе телескопа и проецируется в одну точку. Затем чувствительная часть устройства измеряет тепло, переводит его в зрительные данные, и полученный результат фотографируется для дальнейшего изучения.

Радиотелескоп и инфракрасный телескоп позволяют изучать яркие звезды, в том числе и поверхность Солнца без применения дополнительных защитных систем. Дело в том, что зеркальные, оптические и комбинированные приборы воспринимают именно свет, который в точке фокусировки приводит к сильному разогреву, вызывающему ожог глаз. Если смотреть на Солнце в телескоп с 50-ти кратным увеличением даже мгновение, то можно ослепнуть полностью или на несколько недель. Если глаз будет оставаться в зоне фокусировки света 20 сек, то он прогорит на половину своего диаметра.

Инфракрасные телескопы не могут использоваться в пределах Земной атмосферы. Им мешает присутствующее излучение от планеты, создающее помехи и влияющее на чувствительность. Поэтому инфракрасные телескопы могут применяться только в открытом космосе. Самым известным представителем таких устройств является космический аппарат Хаббл, запущенный в результате совместного проекта американского НАСА и Европейского космического агентства в 1990 году. Однако данный прибор помимо инфракрасных камер оснащен и рефлекторами, для съемки изображения по системе Ричи-Кретьена.

Еще по теме:  Что такое телевизор монитор

Teleskop infrakrasnyi

Выбор любительского телескопа

При подборе телескопа для любительского наблюдения за небосводом можно остановиться на линзовом, зеркальном или комбинированном приборе. При этом если планируется наблюдать не только за космосом, но и наземными объектами, то нужно будет одновременно приобрести дополнительные аксессуары.

Так, зеркальный и комбинированный телескоп показывает отзеркаленное изображение с лева на право. Это исправляется установкой, вместо комплектного диагонального зеркала, диагональной призмы. Во многих комплектациях телескопы изначально уже имеют дополнительные детали, компенсирующие искажения. При покупке прибора нужно обратить на это внимание, если планируется наблюдать за наземными объектами. При изучении космических тел перевернутое или отраженное изображение слева направо не столь важно.

Главными тремя параметрами выбора телескопа являются:
  • Диаметр основного оптического элемента (апертура).
  • Длина фокуса.
  • Светосила.

Светосила телескопа является соотношением между фокусным расстоянием и диаметром объектива. Хорошая светосила позволяет делать снимки из окуляра. Если же она составляет 1:10, то многие даже достаточно яркие поверхности на космическом теле будут выглядеть просто как темные пятна. Для любителей оптимальными считаются приборы со светосилой на уровне 1:5 и 1:7. При покупке телескопа всегда лучше отдать предпочтение большому объективу, чем мелкому.

Похожие темы:
  • Прибор ночного видения. Виды. Применение. Работа. Как выбрать
  • Тепловизор. Виды. Работа. Применение. Как выбрать. Устройство
  • Лупа. Виды и устройство. Работа и применение. Особенности
  • Очки. Виды и устройство. Отличия и применение. Особенности

Источник: tehpribory.ru

8 различных типов телескопов

Телескоп — это, по сути, инструмент, позволяющий наблюдать и изучать астрономические объекты на различных частотах электромагнитного спектра, от гамма-лучей до низкочастотных радиоволн (в том числе и видимой длины волны). По длине волны и частоте обнаруживаемого света телескопы можно разделить на различные типы. Но прежде чем углубиться в этот вопрос, давайте вкратце рассмотрим историю телескопов.

Самый ранний известный телескоп в истории появился еще в начале 1600 года в Нидерландах и предположительно был изобретен голландским производителем очков Иоанном Липперсгеем. Однако название «телескоп» не существовало до 1611 года и было придумано греческим математиком Иоаннис Димисианос.

К 1610 году итальянский эрудит Галилео Галилей уже разработал свою собственную улучшенную версию телескопа, с помощью которой он позже обнаружил четыре галилеевых спутника. Затем, примерно в конце 1660-х годов, Иссак Ньютон сконструировал первый в истории телескоп-рефлектор, который теперь известен как ньютоновский рефлектор.

В течение следующих трехсот лет или около того телескопы будут работать только на видимом спектре света, ограничивая, таким образом, объем доступной информации. Такие телескопы обычно называют оптическими. Только в середине 1900-х годов были разработаны телескопы, способные работать в различных длинах электромагнитных спектров волн.

Не все телескопы расположены на земной поверхности. Да, это так. Ряд усовершенствованных телескопов находятся на орбите вокруг Земли в космосе. Эти космические телескопы собирают свет с длинами волн, которые частично или полностью блокированы земной атмосферой.

Наземные телескопы

1. Оптические телескопы

Оптические телескопы собирают свет видимой длины волны (видимой невооруженным глазом) электромагнитного спектра. Это самые старые и наиболее часто используемые телескопы в мире. Пожалуй, самой важной особенностью оптического телескопа является его светосила, которая намного выше, чем у человеческого глаза.

Оптические телескопы можно разделить на три большие категории; рефракторные, рефлекторные и катадиоптрические оптические конструкции. Каждый из них имеет свои плюсы и минусы и имеет различное применение в астрономии.

Рефракционные телескопы

Рефракционные или диоптрические телескопы — это тип оптических телескопов, в которых для создания изображения используются линзы (вместо зеркал). Каждый рефрактор также имеет окуляр, который позволяет телескопу собирать больше света, чем невооруженный глаз человека.

По конструкции преломляющие телескопы можно разделить на четыре типа — Галилейский телескоп, Кеплеровский телескоп, Ахроматический и Апохроматический рефракторы.

Несмотря на то, что сегодня в мире существует всего несколько преломляющих телескопов исследовательского класса, когда-то они пользовались широкой популярностью. С развитием технологии изготовления линз в конце 19 века преломляющие телескопы стали золотым стандартом в астрономических наблюдениях.

Отражающий телескоп

Отражающий телескоп или отражатель формирует изображение с помощью одного зеркала или, в некоторых случаях, группы зеркал. Первый в мире функциональный телескоп-отражатель был разработан Исааком Ньютоном в 1668 году как альтернатива «некорректному» преломлению.

Несмотря на то, что они до сих пор не могут дать «идеальное» изображение, рефлекторы используются почти во всех других исследовательских телескопах из-за их физических достоинств.

Подобно рефракторам, отражающие телескопы можно разделить на три большие категории в зависимости от конструкции — это телескопы григорианского, ньютоновского и кассегреновского типов. Также есть несколько подтипов и специализированных расширений.

Катадиоптрические телескопы

Третий и менее известный тип оптических телескопов — это катадиоптрические телескопы. Они сочетают в себе элементы отражающих и преломляющих телескопов для создания гибридной оптической системы. Хотя такая оптическая система обычно используется в фарах транспортных средств, некоторые типы телескопов и астрономических камер также используют эту установку.

Катадиоптрические телескопы имеют несколько преимуществ перед телескопами других типов, в том числе лучшую коррекцию ошибок из-за более широкого поля зрения. Кроме того, они менее массивны и проще в изготовлении. Немногочисленные примеры катадиоптрических телескопов — телескоп Аргунова – Кассегрена, телескоп Максутова и камера Шмидта.

2. Радиотелескопы

Радиотелескопы анализируют астрономические объекты на радиочастотах. Другими словами, они обнаруживают сигналы на длинах радиоволн от удаленных астрономических объектов. Пожалуй, наиболее важным компонентом радиотелескопа является его антенна (тарелка), также известная как параболическая антенна.

Поскольку радиосигналы, которые мы получаем от большинства астрономических тел, слабые, радиотелескопам требуются большие антенны, чтобы собрать достаточно данных, чтобы астрономы могли проводить свои исследования. В некоторых случаях несколько радиотелескопов связаны друг с другом электронным способом, что значительно увеличивает область их поиска (радиоинтерферометрия).

Поскольку большинство радиочастот способно проникать в атмосферу Земли, в космических радиотелескопах нет необходимости. Однако потенциально они могут помочь наземным.

Некоторые из диапазонов частот, которые в настоящее время используются радиотелескопами: Радиолиния нейтрального водорода, 23 ГГц, 33 ГГц, 41 ГГц, 61 ГГц, 94 ГГц, 1406 МГц и 430 МГц.

Коммерческое использование этих частот запрещено во многих странах для выполнения радиоастрономических задач.

Радиоинтерферометрия

В радиоинтерферометрии радиосигналы, захваченные несколькими антеннами на большой площади, объединяются вместе, чтобы максимизировать общее разрешение. Эта техника была представлена ​​еще в 1946 году.

Еще по теме:  Куда обратиться чтобы отключить антенну от телевизора

3. Солнечные телескопы

Солнечные телескопы, ранее известные как фотогелиографы, специально разработаны для наблюдения за солнцем в ближнем инфракрасном и ультрафиолетовом диапазонах волн. В отличие от большинства других типов, солнечные телескопы могут работать только в дневное время и обычно располагаются на вершине высокой белой конструкции.

Солнечный телескоп МакМата-Пирса, расположенный в Аризоне (США), является крупнейшим телескопом такого типа. Голландский открытый телескоп и солнечный телескоп Даниэля К. Иноуэ являются хорошими примерами солнечных телескопов.

Космические телескопы

Все началось еще в начале 1920-х годов, когда физики Герман Оберт, Константин Циолковский и Роберт Годдард, три отца-основателя астронавтики, размышляли над идеей космического телескопа, который можно было бы отправить на орбиту Земли с помощью ракеты. Это было началом эры нового класса телескопов.

Затем в 1946 году астрофизик-теоретик Лайман Спитцер из Принстонского университета рассказал о преимуществах такого прибора и о том, как космический телескоп может полностью исключить из телескопических наблюдений атмосферную турбулентность Земли.

Космический телескоп — это научный инструмент, который наблюдает за астрономическими объектами и выполняет другие исследования вне земной атмосферы.

В отличие от наземных телескопов, космические телескопы предлагают более точные наблюдения, поскольку они свободны от какой-либо атмосферной турбулентности и радиационных искажений. Ниже представлены различные типы космических телескопов.

4. Инфракрасные телескопы

Инфракрасная астрономия является важной отраслью современной астрофизики. Поскольку большая часть инфракрасного излучения блокируется атмосферой Земли (относительно небольшая длина волны может пробиться сквозь нее), многие инфракрасные телескопы находятся в космосе.

Инфракрасные телескопы способны обнаруживать удаленные астрономические объекты в пыльных районах космоса. Они также играют важнейшую роль в изучении раннего состояния Вселенной. Однако, в отличие от большинства других длин волн, наблюдение на инфракрасной частоте несколько затруднено, поскольку каждое горячее тело испускает инфракрасное излучение.

Чтобы справиться с этой проблемой, инфракрасные телескопы оснащены специальными камерами, которые постоянно находятся при криогенных температурах (ниже -150 °C) и соединены с твердотельными детекторами.

Легендарный космический телескоп НАСА Спитцер — один из самых важных инфракрасных телескопов космического базирования на сегодняшний день.

5. Ультрафиолетовые телескопы

Атмосфера нашей Земли блокирует попадание на Землю большей части вредной радиации. Сюда входят ультрафиолетовые лучи. По этой причине излучение в ультрафиолетовом диапазоне можно наблюдать только из космоса.

Ультрафиолетовая астрономия позволяет исследователям более внимательно изучать далекие звезды и галактики. Большинство звезд излучают излучение в ближнем инфракрасном или видимом диапазоне длин волн, поэтому в ультрафиолетовом свете они кажутся незначительными. Видны будут только те звезды, которые находятся либо на ранней, либо на поздней стадии эволюции и намного горячее. Фактически, каждый горячий астрономический объект излучает ультрафиолетовое излучение.

Известные ультрафиолетовые космические телескопы

Первым космическим телескопом, способным наблюдать УФ-спектр, была камера/спектрограф в дальнем ультрафиолете, которая была развернута на поверхности Луны миссией Аполлон-16 в 1972 году.

Спектроскопический исследователь дальнего УФ-диапазона НАСА или FUSE и Swift Gamma-Ray Burst Emission являются двумя наиболее яркими примерами ультрафиолетовых телескопов.

6. Рентгеновские телескопы

Рентгеновские телескопы предназначены для изучения очень далеких объектов в рентгеновских частотах. Подобно ультрафиолетовым волнам, частоты рентгеновского излучения блокируются земной атмосферой, поэтому их можно изучать только с помощью космических телескопов.

Основным компонентом рентгеновского телескопа являются зеркала (фокусирующие или коллимирующие), которые собирают излучение и проецируют его на специализированные детекторы. Рентгеновские телескопы с фокусирующими зеркалами нуждаются в длинном фокусе, т.е. зеркала должны располагаться на расстоянии нескольких метров от детекторов.

Известные космические рентгеновские телескопы

С 1960-х годов в космос было выведено почти пятьдесят рентгеновских телескопов. Первый известный рентгеновский спутник UHURU (Ухуру) провел обширные исследования Лебедь X-1 (источник рентгеновского излучения в созвездии Лебедя) и других известных рентгеновских источников. Рентгеновская обсерватория НАСА Чандра, запущенная в 1999 году, стала прорывом в области рентгеновской астрономии.

Чандра в 100 раз более чувствительна к слабым рентгеновским лучам, чем любой другой телескоп до ее запуска. Это стало возможным только благодаря более высокому угловому разрешению ее зеркал. Другими примечательными рентгеновскими обсерваториями являются NuSTAR (Nuclear Spectroscopic Telescope Array) и японский спутник Hitomi.

7. Микроволновые телескопы

Подобно рентгеновским лучам и ультрафиолетовому излучению, атмосфера Земли поглощает большую часть излучения на длине микроволновой волны, поэтому астрономам приходится полагаться на космические микроволновые обсерватории и телескопы для изучения космических микроволн.

Космические микроволны или космическое фоновое излучение — древнейшее электромагнитное излучение во Вселенной; остатки Большого взрыва. Хотя космические микроволновые телескопы обычно используются для изучения космологии ранней Вселенной, они также могут наблюдать синхротронное излучение и другие явления.

Известные космические микроволновые телескопы

Телескопы, установленные на WMAP NASA (Wilkinson Microwave Anisotropy Probe) и спутнике Planck ЕКА, возможно, единственные два действующих в настоящее время микроволновых телескопа космического базирования. Единственным известным космическим микроволновым телескопом был космический исследователь Cosmic background Explorer или COBE, который отключился в 1993 году.

8. Гамма-телескопы.

Гамма-лучи — самая динамичная форма электромагнитного излучения. В то время как гамма-лучи низкой энергии (в диапазоне МэВ) производятся солнечными вспышками, гамма-лучи высокой энергии (ГэВ), с другой стороны, генерируются только в результате экстремальных событий за пределами нашей солнечной системы, таких как сверхсветовой взрыв звезды и т. д. поэтому гамма-лучи важны для различных внегалактических исследований.

Однако их гораздо труднее наблюдать, чем рентгеновские волны. Фактически, на сегодняшний день не существует специализированного гамма-телескопа. Вместо этого астрономы используют вторичные средства для обнаружения потока гамма-лучей в небе, то есть черенковское излучение.

Хотя земная атмосфера действует как барьер для гамма-лучей, во многих случаях их можно наблюдать из нескольких наземных обсерваторий, включая HESS, HAWC и VERITAS.

Известные гамма-телескопы

В настоящее время существует только пять действующих космических телескопов, которые наблюдают за частотой гамма-излучения. Орбитальная обсерватория НАСА Swift, запущенная в 2004 году, обнаруживает загадочные гамма-всплески со всей Вселенной. Еще одна обсерватория NASA, Ферми, специально разработана для наблюдения высокоэнергетических вспышек пульсаров и черных дыр.

В то время как большинство космических спутников наблюдают или слушают только определенную длину волны, существует несколько многоволновых телескопов, которые могут собирать информацию из более чем одного участка электромагнитного спектра одновременно. Космический телескоп Хаббла является прекрасным примером таких телескопов. Он может наблюдать в ближнем инфракрасном, видимом и ультрафиолетовом диапазонах.

Источник: new-science.ru

Оцените статью
Добавить комментарий