Точки света на телевизоре

Квантовая точка — фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах.

Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как — ħ/(2md^2 ), где:
ħ — приведённая постоянная Планка;
d — характерный размер точки;
m — эффективная масса электрона на точке

Если же говорить простым языком то квантовая точка — это полупроводник, электрические характеристики которого зависят от его размера и формы.

Как убрать белые пятна на телевизоре / Как убрать засветы на телевизоре Samsung


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек
Различают два типа:
эпитаксиальные квантовые точки;
коллоидные квантовые точки.

По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов. Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации — также в полярных растворителях.

Конструкция квантовых точек
Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон.

При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях
История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Яркие пятна на экране телевизора LG / Samsung

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?
Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.

Жидкокристаллические дисплеи состоят из 5 слоев: источником является белый свет, излучаемый светодиодами, который проходит через несколько поляризационных фильтров. Фильтры, расположенные спереди и сзади, в совокупности с жидкими кристаллами управляют проходящим световым потоком, понижая или повышая его яркость. Это происходит благодаря транзисторам пикселей, влияющие на количество света, проходимое через светофильтры (красный, зеленый, синий).

Сформированный цвет этих трех субпикселей, на которые наложены фильтры, дает определенное цветовое значение пикселя. Смешение цветов происходит довольно «гладко», но получить таким образом чистый красный, зеленый или синий попросту невозможно. Камнем преткновения выступают фильтры, которые пропускают не одну волну определенной длины, а целый ряд различных по длине волн. К примеру, через красный светофильтр проходит также оранжевый свет.

Стоит отметь что область применения квантовых точек не ограничивается только LED — мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

Еще по теме:  Инструкция к телевизору престижио

Светодиод излучает свет при подаче на него напряжения. Благодаря этому электроны (e) переходят из материала N-типа в материал P-типа. Материал N-типа содержит атомы с избыточным количеством электронов. В материале P-типа присутствуют атомы, которым не хватает электронов. При попадании в последний избыточных электронов они отдают энергию в виде света.

В обычном полупроводниковом кристалле это, как правило, белый свет, образуемый множеством волн различной длины. Причина этого заключается в том, что электроны могут находиться на различных энергетических уровнях. В результате полученные фотоны (P) имеют различную энергию, что выражается в различной длине волн излучения.

Стабилизация света квантовыми точками
В телевизорах QLED в качестве источника света выступают квантовые точки — это кристаллы размером лишь несколько нанометров. При этом необходимость в слое со светофильтрами отпадает, поскольку при подаче на них напряжения кристаллы излучают свет всегда с четко определенной длиной волны, а значит, и цветовым значением.

Данный эффект достигается мизерными размерами квантовой точки, в которой электрон, как и в атоме, способен передвигаться лишь в ограниченном пространстве. Как и в атоме, электрон квантовой точки может занимать только строго определенные энергетические уровни. Благодаря тому что эти энергетические уровни зависят в том числе и от материала, появляется возможность целенаправленной настройки оптических свойств квантовых точек. К примеру, для получения красного цвета используют кристаллы из сплава кадмия, цинка и селена (CdZnSe), размеры которых составляют около 10–12 нм. Сплав кадмия и селена подходит для желтого, зеленого и синего цветов, последний можно также получить при использовании нанокристаллов из соединения цинка и серы размером 2–3 нм.

Массовое производство синих кристаллов очень сложное и затратное, поэтому представленный в 2013 году компанией Sony телевизор не является «породистым» QLED-телевизором на основе квантовых точек. В задней части производимых их дисплеев располагается слой синих светодиодов, свет которых проходит через слой красных и зеленых нанокристаллов.

В результате они, по сути, заменяют распространенные в настоящее время светофильтры. Благодаря этому цветовой охват в сравнении с обычными ЖК-телевизорами увеличивается на 50%, однако не дотягивает до уровня «чистого» QLED-экрана. Последние помимо более широкого цветового охвата обладают еще одним преимуществом: они позволяют экономить энергию, так как необходимость в слое со светофильтрами отпадает. Благодаря этому передняя часть экрана в QLED-телевизорах еще и получает больше света, чем в обычных телевизорах, которые пропускают лишь около 5% светового потока.

Ученые построили теорию формирования широко распространенного класса квантовых точек, которые получают из содержащих кадмий и селен соединений. В течение 30 лет разработки в этом направлении во многом полагались лишь на метод проб и ошибок. Статья опубликована в журнале Nature Communications.

Квантовые точки — это наноразмерные кристаллические полупроводники с примечательными оптическими и электронными свойствами, благодаря которым они уже нашли применение во многих областях исследований и технологий. Они обладают промежуточными свойствами между объемными полупроводниками и отдельными молекулами. Однако в процессе синтеза этих наночастиц остаются неясные моменты, так как полностью понять, как взаимодействуют реагенты, некоторые из которых высокотоксичны, ученые не смогли.

Тодд Краусс и Ли Френетт из Рочестерского университета собираются изменить эту ситуацию. В частности, они выяснили, что в процессе реакции синтеза появляются токсичные соединения, которые использовали для получения первых квантовых точек 30 лет назад. «По сути дела мы отправились «назад в будущее» благодаря нашему открытию, — поясняет Краусс. — Оказалось, что применяемые сегодня более безопасные реактивы превращаются именно в те самые вещества, использование которых пытались избежать десятилетиями. Они же, в свою очередь, реагируют с образованием квантовых точек».

По словам авторов, открытие обеспечит три важных вещи.

Во-первых, оно уменьшит количество догадок при производстве квантовых точек на основе кадмия или селена, что приводило к несоответствиям и невоспроизводимости, мешавшим поиску промышленного применения.
Во-вторых, предупредит исследователей и компании, работающие с синтезом квантовых точек в больших объемах, что они по-прежнему имеют дело с такими опасными веществами, как селеноводород и алкил-кадмиевые комплексы, хотя и неявно.
В-третьих, прояснит химические свойства фосфинов, применяемых во многих процессах синтеза квантовых точек при высокой температуре.

Источник: masterok.livejournal.com

Квантовые точки — новая технология производства дисплеев

Квантовые точки — новая технология производства дисплеев

Секреты крутых телевизоров: Mini-LED, Trichroma и другие технологии

Квантовые точки — это небольшие кристаллы, излучающие свет с точно регулируемым цветовым значением. Они существенно повышают качество изображения, не влияя при этом на конечную стоимость устройств.

Квантовые точки — это небольшие кристаллы, излучающие свет с точно регулируемым цветовым значением. Они существенно повышают качество изображения, не влияя при этом на конечную стоимость устройств.

Quantum dot LED - новая технология экранов

Quantum dot LED — новая технология экранов Обычные ЖК-телевизоры способны передавать лишь 20–30% цветового диапазона, воспринимаемого человеческим глазом. Изображение на OLED-экране больше соответствует реальности, однако данная технология не подходит для массового производства крупных дисплеев.

Еще по теме:  Что такое adblock и как его отключить на телевизоре

Но недавно на ее место пришла новая, обеспечивающая возможность отображения точных цветовых значений. Речь идет о так называемых квантовых точках. В начале 2013 года компания Sony представила первый телевизор на основе квантовых точек (Quantum dot LED, QLED). В этом году в серийное производство будут запущены другие модели устройств, при этом стоить они будут как обычные ЖК-телевизоры и значительно меньше, чем OLED-решения. Чем же отличаются дисплеи, произведенные по новой технологии, от стандартных ЖК-экранов?

В ЖК-телевизорах нет чистых цветов

Жидкокристаллические дисплеи состоят из пяти слоев: исходной точкой является белый свет, излучаемый светодиодами и проходящий через несколько фильтров. Поляризационные фильтры, расположенные спереди и сзади, в сочетании с жидкими кристаллами регулируют проходящий световой поток, понижая или повышая яркость.

Это возможно благодаря транзисторам пикселей, которые влияют на то, сколько света пройдет через светофильтры (красный, зеленый, синий). Сочетание цветов этих трех субпикселей, на которые наложены фильтры, в итоге дает определенное цветовое значение пикселя. Смешение цветов не вызывает проблем, но получить таким образом чистый красный, зеленый или синий невозможно. Причина здесь кроется в фильтрах, которые пропускают не одну волну определенной длины, а целый пучок различных по длине волн. Например, через красный светофильтр проходит также оранжевый свет.

Светодиод светится при подаче на него напряжения. Благодаря этому электроны переходят из материала N-типа в материал P-типа. Материал N-типа содержит атомы с избыточным количеством электронов. В материале P-типа присутствуют атомы, которым не хватает электронов. При попадании в последний избыточных электронов они отдают энергию в виде света.

В обычном полупроводниковом кристалле это, как правило, белый свет, образуемый множеством волн различной длины. Причина этого заключается в том, что электроны могут находиться на различных энергетических уровнях. Поэтому и излученные фотоны имеют различную энергию, что выражается в разной длине волн излучения.

Квантовые точки — стабильный свет

В дисплеях QLED в качестве источника света выступают квантовые точки — кристаллы размером несколько нанометров. При этом необходимость в слое со светофильтрами отпадает, поскольку при подаче на них напряжения кристаллы излучают свет всегда с четко определенной длиной волны, а значит, и цветовым значением — энергетическая зона уменьшается до одного энергетического уровня.

Данный эффект объясняется крохотными размерами квантовой точки, в которой электрон, как и в атоме, способен передвигаться лишь в ограниченном пространстве. Как и в атоме, электрон квантовой точки может занимать только строго определенные энергетические уровни. Благодаря тому что эти энергетические уровни зависят в том числе и от материала, появляется возможность целенаправленной настройки оптических свойств квантовых точек. Например, для получения красного цвета используют кристаллы из сплава кадмия, цинка и селена (CdZnSe), размеры которых составляют около 10–12 нм. Сплав кадмия и селена подходит для желтого, зеленого и синего цветов, последний можно получить также при использовании нанокристаллов из соединения цинка и серы размером 2–3 нм.

В связи с тем обстоятельством, что массовое производство синих кристаллов сопряжено с большими сложностями и затратами, представленный компанией Sony телевизор не является «чистым» QLED-телевизором на основе квантовых точек. В задней части производимых QD Vision дисплеев располагается слой синих светодиодов, свет которых проходит через слой красных и зеленых нанокристаллов.

В результате они, по сути, заменяют распространенные в настоящее время светофильтры. Благодаря этому цветовой охват в сравнении с обычными ЖК-телевизорами увеличивается на 50%, однако не дотягивает до уровня «чистого» QLED-экрана. Последние помимо более широкого цветового охвата обладают еще одним преимуществом: они позволяют экономить энергию, так как необходимость в слое со светофильтрами отпадает. Благодаря этому передняя часть экрана в QLED-телевизорах еще и получает больше света, чем в обычных телевизорах, которые пропускают лишь около 5% светового потока.

Квантовые точки в HD-телевизора

Наши глаза способны видеть больше цветов, чем могут отобразить HD-телевизоры. Изменить данную ситуацию могут дисплеи на основе квантовых точек. Квантовые точки — это крохотные частицы диаметром несколько нанометров, которые излучают свет с одной определенной длиной волны и всегда с одним и тем же цветовым значением. Если же говорить о светофильтрах, используемых в современных телевизорах, то они обеспечивают лишь размытые цвета.

Экраны без светофильтров

В современных телевизорах белый свет светодиодных ламп (подсветка) становится цветным благодаря светофильтрам. В дисплее на основе квантовых точек (QLED) цвет формируется непосредственно в источнике излучения. Системы регулировки яркости посредством жидких кристаллов и поляризации изменений не претерпели.

Световые ячейки в сравнении

В светодиодах электроны переходят из материала N-типа в материал P-типа, отдавая при этом энергию в виде белого света с различными длинами волн. Фильтр формирует нужный цвет. В телевизорах QLED нанокристаллы излучают свет с определенной длиной волны, а значит, и цветом.

Более широкий цветовой охват

Дисплеи на квантовых точках способны отображать более естественные цвета (красный, зеленый, синий), чем традиционные телевизоры, покрывая более широкий цветовой диапазон, который наиболее близок к нашему цветовому восприятию.

Еще по теме:  Почему не работает старый телевизор
Размер и материал определяют цвет

Когда электрон (e) соединяется с квантовой точкой, освобождается энергия в виде фотонов (P). Используя различные материалы и изменяя размер нанокристаллов, можно влиять на величину этой энергии и, как следствие, длину световой волны.

Источник: ichip.ru

Основы постановки света в кинематографе

osnovy postanovki sveta v kinematografe

Если вы работаете в сфере кино или интересуетесь съемочным процессом, то наверняка вы уже знаете, как много зависит от освещения. Эта статья будет посвящена именно построению света в кинематографе и поможет вам начать лучше разбираться в этом искусстве.

Почему вам стоит обратить внимание на освещение?

Освещение – важнейшая часть кинопроизводства. Свет может создать персонажа, скрыть недостатки и вызвать у зрителя бурю эмоций: он так же важен, как и актерское мастерство и музыкальное сопровождение.

Многие независимые режиссеры нередко игнорируют свет и больше думают о качестве камеры и линзы. Но на самом деле даже с Panavision Panaflex изображение будет выглядеть скучным и плоским, если освещению не было уделено достаточно внимания.

С чего же начать?

свет

Если вам хочется начать лучше разбираться в освещении, то знакомство с основной терминологией точно не помешает. Вот вам некоторые важные термины, необходимые для работы со светом:

Искусственный свет

Любой свет неестественного происхождения называется искусственным. В кинематографе искусственный свет используется как дополнение к дневному свету или для создания эффекта дневного света при его отсутствии.

Шторки осветительного прибора

Шторки используются на прожекторе для контроля и распределения источников света. Они могут быть использованы для создания теней и направления световых лучей.

Задний свет

Задний свет отделяет или приподнимает окружение. Он располагается лицом к линзе, сзади объекта или перед ним.

Отражающийся свет

Источник света, который отражается от белой поверхности. Такой свет выглядит очень мягко и помогает сделать светлее даже очень большие пространства.

Цветовая температура

Цветовая температура измеряется в Кельвинах и определяет тон источника света. В кинопроизводстве различные цветовые фильтры помогают сбалансировать изображение.

Линза Френеля

Линза, используемая в некоторых лампах для фокусировки и контроля источников света

Жесткий свет

Прямой, контролируемый источник света, который используется для создания драматического эффекта.

Хайлайты

Ярко освещенные области площадки, которые задают форму и структуру .

Мягкий свет

Менее контролируемый источник света, который создает более плоскую и гладкую картинку. Идеально подходит для освещения лица.

Дневной свет

Естественные источники света, могут быть воссозданы с помощью металлогалогенной лампы

видеограф

Теперь, давайте ознакомимся с несложной, но отличной техникой постановки света, которая поможет вам лучше понять, как работает освещение в кинематографе. Она называется 3 точки освещения. И, как и говорит название, для работы в нем нам понадобятся 3 основных источника света: Ключевой, Заполняющий и Контровой .

Ключевой свет

Это основной и самый сильный источник света. Он располагается по обе стороны от камеры и обозначает все объекты на площадке.

Заполняющий свет

Он располагается напротив ключевого света. Он должен быть мягче, чем основной свет (3:1). Основное его предназначение – это избавится от всех нежелательных теней, созданных ключевым светом.

Контровой свет

Располагается за человеком или любым другим объектом. Основное его предназначение – выделить какие-то особенности, такие как плечи и волосы. Он отделяет актера от фона и помогает сделать его более объемным, трехмерным.

Вот так будет выглядеть основной объект после настойки всех трех источников света:

После того как вы научитесь понимать все тонкости этой техники, вы с легкостью можете экспериментировать, добавляя и убирая источники света для создания необычных эффектов.

Теперь, после того как вы уже ознакомились со способами постановки света, мы хотели бы дать вам несколько советов и небольших хитростей, которые смогут помочь вам добиться невероятно красивого эффекта и сделают изображение еще интереснее:

1. Жесткий, прямой свет не смягчает изображение

Если вам хочется создать более плоское изображение – используйте диффузор как для ключевого, так и для заполняющего света, сохраняя соотношение 3:1.

2. Обратите внимание на фон

Для того, чтобы избежать нежелательных теней на стенах и декорациях, старайтесь держать актеров как можно дальше от фона.

3. Недостаточно места? Сделайте свет ярче

Если пространство, где проходит съемка, ограничено, чтобы избежать неаккуратных теней просто сделайте свет ярче.

4.Нет диффузора? Используйте отражатели

Еще один способ сделать картинку более мягкой – это отразить свет с помощью светоотражателей или белых стен.

5. Скучная картинка?

Попробуйте использовать цветной гель на контровом свете. Это поможет создать очень интересную атмосферу.

6. Не забывайте о пудре

Всегда держите натуральную пудру для лица неподалеку, если вы работаете с людьми. Это поможет избежать некрасивых отблесков на лице.

Главная фотография взята из сайта — Depositphotos.com

Оцените статью
Добавить комментарий