Передача данных играет очень большую роль в электронике.
В прошлых статьях по цифровой электронике я рассказывал о цифровых сигналах. Чем же так хороши эти цифровые сигналы? Как это бы странно не звучало, но цифровые сигналы по своей природе являются аналоговыми, так как передаются путем изменения значения напряжения или тока, но передают сигналы с ранее оговоренными уровнями. По своей сути, они являются дискретными сигналами.
А что означает слово «дискретный»? Дискретный — это значит состоящий из отдельных частей, раздельный, прерывистый. Цифровые сигналы относятся как раз к дискретным сигналам, так как имеют только ДВА СОСТОЯНИЯ: «активно» и «не активно» — «есть напряжение/ток» и «нет напряжения/тока».
Главный плюс цифровых сигналов в том, что их проще передавать и обрабатывать. Для передачи чаще всего используют напряжение. Поэтому, принято два состояния: напряжение близко к нулю (менее 10% от значения напряжения) и напряжение близко к напряжению питания (более 65% от значения). Например, при напряжении питания схемы 5 Вольт мы получаем сигнал с напряжением 0,5 Вольт — «ноль», если же 4,1 Вольта — «единица».
Последовательный метод передачи информации
Есть просто два провода, источник электрического сигнала и приемник электрического сигнала, которые цепляются к этим проводам.
Это ФИЗИЧЕСКИЙ УРОВЕНЬ.
Как мы уже сказали, по этим двум проводам мы можем передавать только два сигнала: «есть напряжение/ток» и «нет напряжения/тока». Какие способы передачи информации мы можем реализовать?
Самый простой способ — сигнал есть (лампочка горит) — это ЕДИНИЧКА, сигнала нет (лампочка не горит) — это НОЛЬ
Если пораскинуть мозгами, можно придумать еще несколько различных комбинаций. Например, широкий импульс принять за единичку, а узкий — за ноль:
Или даже вообще взять за единичку и ноль фронт и срез импульса. Внизу рисунок, если подзабыли, что такое фронт и срез импульса.
А вот и практическая реализация:
Да можно хоть сколько придумать различных комбинаций, если «получатель» и «отправитель» согласуют прием и передачу. Здесь я привел просто самые популярные способы передачи цифрового сигнала. То есть все эти способы и есть ПРОТОКОЛЫ. И их, как я уже сказал, можно напридумывать очень много.
Скорость обмена данными
Представьте себе картину… Студенты, идет лекция… Преподаватель диктует лекцию, а студенты ее записывают
Но если преподаватель очень быстро диктует лекцию и в придачу эта лекция по физике или матанализу, то в результате получаем:
Почему же так произошло?
С точки зрения цифровой передачи данных, можно сказать, что скорость обмена данными между «Отправителем» и «Получателем» разная. Поэтому, может быть реальна ситуация, когда «Получатель» (студент) не в состоянии принять данные от «Отправителя» (преподавателя) из-за несоответствия скорости передачи данных: скорость передачи может быть выше или ниже той, на которую настроен приемник (студент).
Данная проблема в разных стандартах последовательной передачи данных решается по-разному:
- предварительная договоренность о скорости передачи данных (договориться с преподавателем, чтобы диктовал лекцию медленнее или чуть быстрее);
- перед передачей информации «Отправитель» передает некую служебную информацию, используя которую «Получатель» подстраивается под «Отправителя» ( Преподаватель: «Кто не запишет эту лекцию полностью, тот не получит зачет»)
Чаще всего, используется первый способ: в устройствах связи заранее устанавливается необходимая скорость обмена данными. Для этого используется тактовый генератор, который вырабатывает импульсы для синхронизации всех узлов устройства, а также для синхронизации процесса связи между устройствами.
Управление потоком
Также возможна ситуация, когда «Получатель»(студент) не готов принимать передаваемые «Отправителем»(преподавателем) данные по какой-либо причине: занятость, неисправность и др.
Решается эта проблема различными методами:
1) На уровне протоколов. Например, в протоколе обмена оговорено: после передачи «Отправителем» служебного сигнала «начало передачи данных» в течение определенного времени «Получатель» обязан подтвердить принятие этого сигнала путем передачи специального служебного сигнала «готовность к приему».
Данный способ называют «программным управлением потоком» — «Soft»
2) На физическом уровне — используются дополнительные каналы связи, по которым «Отправитель» ДО передачи информации запрашивает у «Получателя» о его готовности к приему). Такой способ называют «аппаратным управлением потоком» — «Hard»;
Оба метода очень распространены. Иногда они используются одновременно: и на физическом уровне, и на уровне протокола обмена.
При передаче информации важно засинхронизировать работу передатчика и приемника. Способ установки режима связи между устройствами называют «синхронизацией». Только в этом случае «Получатель» может правильно (достоверно) принять переданное «Отправителем» сообщение.
Режимы связи
Симплексная связь
В этом случае Получатель может только принимать сигналы от отправителя и никак не может на него повлиять. Это в основном телевидение или радио. Мы можем их только или смотреть или слушать.
Полудуплексная связь
В этом режиме и отправитель и получатель могут передавать друг другу сигналы поочередно, если канал свободен. Отличный пример полудуплексной связи — это рации. Если оба абонента будут трещать каждый в свою рацию одновременно, то никто никого не услышит.
— Первый, первый. Я второй. Как слышно?
— Слышу вас нормально, отбой!
Сигнал может посылать только отправитель, в этом случае получатель его принимает. Либо сигнал может отправлять получатель, а в этом случае отправитель его получает. То есть и отправитель и получатель имеют равные права на доступ к каналу (линии связи). Если они сразу оба будут передавать сигнал в линию, то, как я уже сказал, ничего из этого не получится.
Дуплексная связь
В этом режиме и прием и передача сигнала могут вестись сразу в двух направлениях одновременно. Яркий тому пример — разговор по мобильному или домашнему телефону, или разговор в Skype.
Источник: www.ruselectronic.com
Классификация каналов связи. Симплексный. Полудуплексный. Дуплексный.
В технических системах часто возникает задача связать две подсистемы или два узла для организации информационного обмена между ними. Полученную коммуникативную связь называют каналом связи.
Каналы связи можно разделить по типу передаваемого сигнала (электрический, оптический, радиосигнал и т.д.), по среде передачи данных (воздух, электрический проводник, оптоволокно и т.д.) и по многим другим характеристикам. В этой статье речь пойдёт о делении каналов связи по режимам и правилам приёма и передачи информации. По указанным признакам каналы связи делят на симплексные, полудуплексные и дуплексные.
Симплексная связь
Симплексный канал связи — это односторонний канал, данные по нему могут передаваться только в одном направлении. Первый узел способен отсылать сообщения, второй может только принимать их, но не может подтвердить получение или ответить. Типичным примером каналов связи этого типа является речевое оповещение в школах, больницах и других учреждениях. Другой пример — радио и телевидение.
При симплексной передаче данных один узел связи имеет передатчик, а другой (другие) приёмник.
Полудуплексная связь
При полудуплексном типе связи оба абонента имеют возможность принимать и передавать сообщения. Каждый узел имеет в своём составе и приёмник, и передатчик, но одновременно они работать не могут. В каждый момент времени канал связи образуют передатчик одного узла и приёмник другого.
Типичным примером полудуплексного канала связи является рация. По рации обычно происходит приблизительно такой диалог:
— Белка, Белка! Я Мадагаскар! Приём!
— Мадагаскар, я Белка. Приём!
Слово «Приём» делегирует право на передачу сообщения. В этот момент узел, который был приёмником, становится передатчиком и наоборот. Конечно, направление обмена данными меняется не само по себе. Для этого на рации предусмотрена специальная кнопка. Человек, начинающий говорить, зажимает эту кнопку, включая свою рацию в режим передачи.
После этого он произносит своё сообщение и кодовое слово «Приём», отпускает кнопку и возвращается в режим приёмника. Кодовое слово даёт другому абоненту понять, что сообщение закончено и он может переключиться в режим передачи для ответного сообщения. Слово «Приём» позволяет избежать коллизий, когда оба абонента начнут передавать одновременно и ни одно из сообщений не будет услышано собеседником.
Дуплексная связь
По дуплексному каналу данные могут передаваться в обе стороны одновременно. Каждый из узлов связи имеет приёмник и передатчик. После установления связи передатчик первого абонента соединяется с приёмником второго и наоборот.
Классическим примером дуплексного канала связи является телефонный разговор. Безусловно, одновременно говорить и слушать собеседника тяжело для человека, но такая возможность при телефонном разговоре имеется, и,согласитесь, разговаривать по дуплексному телефону гораздо удобнее, чем по полудуплексной рации. Электронные же устройства, в отличие от человека, без проблем могут одновременно передавать и принимать сообщения, благодаря своему быстродействию и внутренней архитектуре.
Источник: lazysmart.ru
Что может являться примером симплексной передачи данных телефон рация компьютер телевизор
Главная Технологии Информация о технологиях
Что такое симплекс, полудуплекс и полный дуплекс, разница между ними
Подробности мая 26, 2016 Просмотров: 131271
Соединения WiFi работает в полудуплексном режиме, а проводная часть локальной сети в полном дуплексе. Узнайте больше прочитав эту статью.
Дуплекс против симплекса
В сети термин «дуплекс» означает возможность для двух точек или устройств связываться друг с другом в оба направления, в отличие от «симплекса», который относится к однонаправленной коммуникации. В системе дуплексной связи, обе точки (устройства) могут передавать и получать информацию. Примерами дуплексных систем являются телефоны и рации.
С другой стороны, в симплекс системе одно устройство передает информацию, а другое получает. Пульт дистанционного управления является примером системы симплекс, где пульт дистанционного управления передает сигналы, но не получает их в ответ.
Полный и полудуплекс
Полная дуплексная связь между двумя компонентами означает, что оба могут передавать и получать информацию друг другу одновременно. Телефоны являются полными дуплексными системами, так как обе стороны могут говорить и слушать одновременно.
В полудуплексных системах передача и прием информации должны происходить поочередно. Во время передачи одной точки, остальные должны только получать. Рации являются полудуплексными системами, в конце передачи участник должен сказать «Прием», это означает, что он готов получать информацию.
WiFi роутеры
WiFi роутеры (маршрутизаторы) — это устройства, которые модулируют и планируют потоки информации из и от любого WiFi-совместимого электронного устройства (например, ноутбук или смартфон) к сети Интернет, используя определенный стандарт или протокол, называемый IEEE 802.11, который работает в полудуплексном режиме. WiFi это только торговая марка для определенного стандарта IEEE.
WiFi устройства подключаются к маршрутизатору с помощью радиоволн частотой 2,4 ГГц или 5 ГГц. Маршрутизатор гарантирует правильное распределение информационных потоков между подключенным устройством и Интернетом; с помощью процесса вызова с временным разделением каналов (TDD) который работает в режиме полного дуплекса.
TDD эмулирует полную дуплексную связь путем создания или деления периодов времени, которые чередуются между передачей и приемом. Пакеты данных идут в обоих направлениях, как продиктовано расписанием. Путем точного разбития этих периодов времени, подключенные устройства, могут осуществлять передачу и прием одновременно.
Самой большой проблемой для достижения полнодуплексного контроля над радиосвязью являются внутрисистемные помехи. Это помехи или шум более интенсивный, чем сам сигнал. Проще говоря, помехи в полнодуплексной системе возникают тогда, когда одна точка осуществляет передачу и прием одновременно, и также получает свою собственную передачу, следовательно, происходит само-интерференция.
Практически полнодуплексная беспроводная связь возможна в сферах исследований и научных сообществах. Во многом это достигается за счет устранения собственных помех на двух уровнях. Первый способ-инверсия самого шумового сигнала и тогда процесс шумоподавления дополнительно усиливается в цифровом виде.
Что насчет проводной сети?
Проводная часть локальной сети обменивается данными в режиме полного дуплекса с помощюю двух пар крученных проводов, образующих кабельное подключение Ethernet. Каждая пара предназначена для передачи и приема пакетов информации одновременно, поэтому нет столкновения данных и передача осуществляется без помех.
Прогресс в области WiFi-связи
В рамках протокола IEEE 802.11, были внесены изменения для достижения лучшего диапазона или лучшей пропускной способности, или то и другое. От своего основания в 1997 году до 2016, беспроводные стандарты были скорректированы от 802.11, 802.11b/a, 802.11g, 802.11n, 802.11ac, и наконец последний 802.22. Какими бы прогрессивными они ни стали, они по-прежнему принадлежат семье 802, который будет постоянно работать в режиме полудуплекса. Хотя были сделаны многие улучшения, особенно с включением технологии MIMO, работа в полудуплексном режиме снижает общую спектральную эффективность в два раза.
Интересно отметить, что MIMO поддерживаемая маршрутизаторами (со многими входами и многими выходами) рекламирует гораздо более высокие скорости передачи данных. Эти маршрутизаторы используют несколько антенн для передачи и приема одновременно нескольких потоков данных, которые могут увеличить общую скорость передачи. Это часто встречается и в маршрутизаторах 802.11 N, которые рекламируют скорости от 600 мегабит в секунду и выше. Однако, так как они работают в полудуплексном режиме, 50 процентов (300 мегабит в секунду) пропускная способность резервируется для передачи в то время как другие 50 процентов используют для получения.
Полнодуплексный WiFi в будущем
К полнодуплексной беспроводной связи растет все больший коммерческий интерес. Основная причина, состоит в том, что прогресс в полудуплексном FDD и TDD не насыщен. Усовершенствования программного обеспечения, модуляции достижений и улучшений технологии MIMO становятся все сложнее и сложнее. Поскольку все больше новых устройств имеют беспроводное подключение, необходимость повышения эффективности использования спектра в конечном итоге имеет первостепенное значение. Появление полнодуплексной беспроводной связи мгновенно удвоит спектральную эффективность.
Источник: juice-health.ru