Как выглядит усилитель звука в телевизоре

Транзистор — это полупроводниковый прибор, который позволяет генерировать, создавать и усиливать электрические колебания. С помощью него можно усилить любой электрический сигнал. Разберем типовую. схему включения биполярного n-p-n транзистора.

Разбор схемы

Это моно-усилитель мощности звуковой частоты.

Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).

В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.

Как именно определяется схема включения? Входящий сигнал подается на базу и эмиттер, а выходящий снимается с коллектора и эмиттера. То есть, по сути, общий контакт эмиттер. Поэтому схема называется с общим эмиттером. Эмиттер – это силовая часть транзистора, которая позволяет усилить сигнал по максимуму.

Усилитель из Телевизора

Данная схема имеет один каскад усиления.

Что такое каскад

Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной.

Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

К тому же, электролитические конденсаторы должны разряжаться после выключения. Тем более, есть предел для увеличения емкости для схемы. Если в эту схему подключить конденсатор емкостью 1 фарад (1 000 000 мкФ), то уровень шума на выходе усилителя будет такой же, как и при 1000 мкФ. Это связано с тем, что у транзистора так же есть и свои «шумы», отсутствие экранировки на входе, динамические искажения и другие параметры.

Как из платы телевизора сделать усилитель звука

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Вход усилителя

Вход усилителя – это клеммы Х1 и Х2.

Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.

Можно подключить как левый канал, так и правый и оба сразу.

Фильтрация входного сигнала

Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.

По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.

Не путайте этот эффект со свистом. Свист – это влияние положительной обратной связи, а в данном случае будет режим насыщения из-за короткого замыкания на входе. И на выходе усилителя будет слышен именно хрип, а не свит или звук.

Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.

Рабочая точка и смещение базы

Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.

Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.

Ток, который протекает через R1 и R2 поступает на базу транзистора VT1, который потом уходит через эмиттер, тем самым его открывая. Это называется базовое смещение транзистора, то есть его открытие. Напряжение смещения определяет рабочую точку. В данном случае усилитель А класса.

Как определяется класс усилителя

Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.

Например, точка по центру это А класс.

А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.

Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.

Также от рабочей точки зависит и чувствительность усилителя.

Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.

Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.

Поэтому, схемотехники и инженеры изобрели цифровые усилители. У них аналоговый сигнал преобразовывается в цифровой, и только потом подается на вход усилителя. Транзистор не искажает входной цифрой сигнал. После усиления сигнал снова преобразовывается в аналоговый с наименьшими потерями и искажениями.

А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.

Еще по теме:  Телевизор Супра 32 отзывы покупателей

Стабилизация работы схемы

Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.

При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.

Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.

Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.

Благодаря этому транзистор:

  • не закрывается;
  • не переходит в режим насыщения;
  • не искажает сигнал;
  • и не перегревается.

Это называется термостабилизация работы усилителя.

А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.

Выход усилителя

На выход к усилителю можно подключить как другой усилитель, который усилит сигнал еще больше, так и динамическую головку.
Динамическая головка — это обычный динамик. Он воспроизведёт звук с выхода транзистора VT1.

Однако и тут есть много нюансов.

Самое важное касается согласование сопротивления нагрузки и сопротивления усилителя.

Если сопротивление выхода транзистора намного больше, чем у динамической головки, то он не сможет передать всю мощность. Как минимум большая часть напряжения останется на его контактах.

Для данной схемы нужен динамик с сопротивлением около 1 кОм.

Если поставить меньше, например, на 4 Ома, то и половина мощности не воспроизведется, а коллектор VT1 начнет еще сильнее нагреваться.

Согласование сопротивлений входа, выхода и нагрузки усилителя рассчитывается на этапе проектирования схемы. Поэтому не следует их нарушать.

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.

Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.

В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

От чего зависит мощность схемы

У этой схемы есть ограничения. Можно поменять VT1 КТ315 на более мощный, у которого коэффициент усиления будет выше, но этот лимит усиления не бесконечный.

В первую очередь, все зависит от используемого транзистора. Если поменять его на более мощный, то и усиление будет выше. Но следует помнить, что чем мощнее транзистор, тем мощнее нужен входной сигнал. К тому же, придется сделать перерасчет всех компонентов. И подключать предусилитель, собирать схему блока питания, а это уже будет совсем другая схема.

У транзисторов есть ряд параметров, которые влияют на схему. Это коэффициент усиления по току (h21э), напряжению, мощности. А также важный параметр — это рассеиваемая мощность на коллекторе. С повышением мощности потребуется радиатор для отвода тепла.

Как собрать схему

Схему можно собрать на текстолите или на макетной плате. Перейдите по ссылке на эту статью, в ней подробнее описывается процесс сборки и проверки схемы.

Используйте качественные детали и хороший припой. Она рабочая. Это вообще классическая схема включения биполярного транзистора с общим эмиттером.

Также на сайте есть и другие схемы усилителей, которые не сложны в сборке и не дорогие по стоимости деталей.

Как проверить работу схемы

Достаточно прикоснуться до входа УНЧ отверткой, и на выходе послышаться треск. Это переменная наводка, которая усилится схемой.

Источник: tyt-sxemi.ru

Как работает усилитель звуковой частоты

Добрый день уважаемый хабраюзер, я хочу рассказать тебе о основах построения усилителей звуковой частоты. Я думаю эта статья будет интересна тебе если ты никогда не занимался радиоэлектроникой, и конечно же она будет смешна тем кто не расстаётся с паяльником. И поэтому я попытаюсь расказать о данной теме как можно проще и к сожалению опуская некоторые нюансы.

Усилитель звуковой частоты или усилитель низкой частоты, что бы разобраться как он всё таки работает и зачем там так много всяких транзисторов, резисторов и конденсаторов, нужно понять как работает каждый элемент и попробовать узнать как эти элементы устроены. Для того что бы собрать примитивный усилитель нам понадобятся три вида электронных элементов: резисторы, конденсаторы и конечно транзисторы.

Резистор

Итак, резисторы у нас характеризуются сопротивлением электрическому току и это сопротивление измеряется в Омах. Каждый электропроводящий металл или сплав металлов имеют своё удельное сопротивление. Если мы возьмём проволоку определённой длинны с большим удельным сопротивлением, то у нас получится самый настоящий проволочный резистор. Для того что бы резистор был компактным, проволоку можно намотать на каркас. Таким образом у нас получится проволочный резистор, но он имеет ряд недостатков, поэтому резисторы обычно изготавливаются из металлокерамического материала. Вот так обозначаются резисторы на электрических схемах:

Верхний вариант обозначения принят в США, нижний в России и в Европе.

Конденсатор

Конденсатор представляет из себя две металлических пластины разделённые диэлектриком. Если мы подадим на эти пластины постоянное напряжение, то появится электрическое поле, которое после отключения питания будет поддерживать на пластинах положительный и отрицательный заряды соответственно.

Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

Таким образом конденсатор способен накапливать электрический заряд. Эта способность накапливать электрический заряд называется электрическая ёмкость, что есть главный параметр конденсатора. Электрическая ёмкость измеряется в Фарадах. Что ещё характерно, это то что когда мы заряжаем или разряжаем конденсатор, через него идёт электрический ток.

Но как только конденсатор зарядился, он перестаёт пропускать электрический ток, а это потому что конденсатор принял заряд источника питания, то есть потенциал конденсатора и источника питания одинаковые, а если нет разности потенциалов (напряжения), нет электрического тока. Таким образом, заряженный конденсатор не пропускает постоянный электрический ток, но пропускает переменный ток, так как при подключении его к переменному электрическому току, он будет постоянно заряжаться и разряжаться. На электрических схемах его обозначают так:

Транзистор

В нашем усилителе мы будем использовать самые простые биполярные транзисторы. Транзистор изготавливают из полупроводникового материала. Нужное для нас свойство это материала, — наличие в них свободных носителей как положительных, так и отрицательных зарядов.

Еще по теме:  Инструкция к телевизору digital

В зависимости от того каких зарядов больше, полупроводники различают на два типа по проводимости: n-тип и p-тип (n-negative, p-positive). Отрицательные заряды — это электроны, освободившиеся с внешних оболочек атомов кристаллической решетки, а положительные — так называемые дырки. Дырки — это вакантные места, остающиеся в электронных оболочках после ухода из них электронов. Условно обозначим атомы с электроном на на внешней орбите синим кружком со знаком минус, а атомы с вакантным местом — пустым кружком:

Каждый биполярный транзистор состоит из трёх зон таких полупроводников, эти зоны называют база, эмиттер и коллектор.

Рассмотрим пример работы транзистора. Для этого подключим к транзистору две батарейки на 1,5 и на 5 вольт, плюсом к эмиттеру, а минусом к базе и коллектору соответственно (смотрим рисунок):

На контакте базы и эмиттера появится электромагнитное поле, которое буквально вырывает электроны с внешней орбиты атомов базы и переносит их в эмиттер. Свободные электроны оставляют за собой дырки, и занимают вакантные места уже в эмиттере. Это же электромагнитное поле оказывает такое же воздействие на атомы коллектора, а так как база в транзисторе достаточно тонкая относительно эмиттера и коллектора, электроны коллектора достаточно легко проходят сквозь неё в эмиттер, причём в гораздо большем количестве чем из базы.

Если же мы отключим напряжение от базы, то никакого электромагнитного поля не будет, а база будет выполнять роль диэлектрика, и транзистор будет закрыт. Таким образом при подаче на базу достаточно малого напряжения, мы можем контролировать большее поданное напряжение на эмиттер и коллектор.

Рассмотренный нами транзистор pnp-типа, так как у него две p-зоны и одна n-зона. Так же существуют npn-транзисторы, принцип действия в них такой же, но электрический ток течёт в них в противоположную сторону, чем в рассмотренном нами транзисторе. Вот так биполярные транзисторы обозначаются на электрических схемах, стрелка указывает направление тока:

УНЧ

Ну что ж, попробуем спроектировать из этого всего усилитель низкой частоты. Для начала нам нужен сигнал который мы будем усиливать, это может быть звуковая карта компьютера или любое другое звуковое устройство с линейным выходом. Допустим наш сигнал с максимальной амплитудой примерно 0,5 вольта при токе 0,2 А, примерно такой:

А что бы заработал самый простой 4-х омный 10 ваттный динамик, нам нужно увеличить амплитуду сигнала до 6 вольт, при силе тока I = U / R = 6 / 4 = 1,5 A.

Итак, попробуем подключить наш сигнал к транзистору. Вспомните нашу схему с транзистором и двумя батарейками, теперь вместо 1,5 вольтовой батарейки у нас у нас сигнал линейного выхода. Резистор R1 выполняет роль нагрузки, дабы не было короткого замыкания и наш транзистор не сгорел.

Но тут возникают сразу две проблемы, во-первых наш транзистор npn-типа, и открывается только при положительном значении полуволны, а при отрицательном закрывается.

Во-вторых транзистор, как и любой полупроводниковый прибор имеет нелинейные характеристики в отношении напряжения и тока и чем меньше значения тока и напряжения тем сильнее эти искажения:

Мало того что от нашего сигнала осталась только полуволна, так она ещё и будет искажена:

Это есть так называемое искажение типа ступенька.

Чтобы избавиться от этих проблем, нам нужно сместить наш сигнал в рабочую зону транзистора, где поместится вся синусоида сигнала и нелинейные искажения будут незначительны. Для этого подают на базу напряжение смещения, допустим в 1 вольт, с помощью составленного из двух резисторов R2 и R3 делителя напряжения.

А наш сигнал входящий в транзистор будет выглядеть вот так:

Теперь нам нужно изъять наш полезный сигнал с коллектора транзистора. Для этого установим конденсатор C1:

Как мы помним конденсатор пропускает переменный ток и не пропускает постоянный, поэтому он нам будет служить фильтром пропускающим только наш полезный сигнал — нашу синусоиду. А постоянная составляющая не прошедшая через конденсатор будет рассеиваться на резисторе R1. Переменный же ток, наш полезный сигнал, будет стремиться пройти через конденсатор, так сопротивление конденсатора для него ничтожно мало по сравнению с резистором R1.

Вот и получился первый транзисторный каскад нашего усилителя. Но существуют ещё два маленьких нюанса:

Мы не знаем на 100% какой сигнал входит в усилитель, вдруг всё таки источник сигнала неисправен, всякое бывает, опять же статическое электричество или вместе с полезным сигналом проходит постоянное напряжение. Это может стать причиной не правильной работы транзистора или даже спровоцировать его поломку. Для этого установим конденсатор С2, он подобно конденсатору С1 будет блокировать постоянный электрический ток, а так же ограниченная ёмкость конденсатора не будет пропускать пики большой амплитуды, которые могут испортить транзистор. Такие скачки напряжения обычно происходят при включении или отключении устройства.

И второй нюанс, любому источнику сигнала требуется определённая конкретная нагрузка (сопротивление). По этому для нас важно входное сопротивление каскада. Для регулировки входного сопротивления добавим в цепь эмиттера резистор R4:

Теперь мы знаем назначение каждого резистора и конденсатора в транзисторном каскаде. Давайте теперь попробуем рассчитать какие номиналы элементов нужно использовать для него.

Исходные данные:

  • U = 12 В — напряжение питания;
  • U бэ ~ 1 В — Напряжение эмиттер-база рабочей точки транзистора;

Выбираем транзистор, для нас подойдёт npn-транзистор 2N2712

  • P max = 200 мВт — максимальная рассеиваемая мощность;
  • I max = 100 мА — максимальный постоянный ток коллектора;
  • U max = 18 В — макcимально допустимое напряжение коллектор-база / коллектор-эмиттер (У нас напряжение питания 12 В, так что хватает с запасом);
  • U эб = 5 В — макcимально допустимое напряжение эмиттер-база (наше напряжение 1 вольт ± 0,5 вольта);
  • h21 = 75-225 — коэффициент усиления тока базы, принимается минимальное значение — 75;

  • Рассчитываем максимальную статическую мощность транзистора, её берут на 20% меньше максимальной рассеиваемой мощности, дабы наш транзистор не работал на пределе своих возможностей:
  • P ст.max = 0,8*P max = 0,8 * 200мВт = 160 мВт;

    I к0 = P ст.max / U кэ, где U кэ — напряжение перехода коллектор-эмиттер. На транзисторе рассеивается половина напряжения питания, вторая половина будет рассеиваться на резисторах:

    U кэ = U / 2;

    I к0 = P ст.max / (U / 2) = 160 мВт / (12В / 2) = 26,7 mA;

    R н = R1 + R4, где R н — общее сопротивление нагрузки;

    Отношение между R1 и R4 обычно принимается 1 к 10:

    R1 = R4*10;

    Рассчитаем сопротивление нагрузки:

    R1 + R4 = (U / 2) / I к0 = (12В / 2) / 26,7 mA = (12В / 2) / 0,0267 А = 224,7 Ом;

    Ближайшие номиналы резисторов это 200 и 27 Ом. R1 = 200 Ом, а R4 = 27 Ом.

    U к0 = (U кэ0 + I к0 * R4) = (U — I к0 * R1) = (12В -0,0267 А * 200 Ом) = 6,7 В;

    I б = I к / h21, где I к — ток коллектора;

    I к = (U / R н);

    I б = (U / R н) / h21 = (12В / (200 Ом + 27 Ом)) / 75 = 0,0007 А = 0,7 mA;

    R2 + R3 = U / I дел = 12В / 0,007 = 1714,3 Ом

    U э = I к0 * R4 = 0,0267 А * 27 Ом = 0,72 В

    Еще по теме:  В какие игры можно поиграть на телевизоре

    Да, I к0 ток покоя коллектора, но этот же ток проходит и через эмиттер, так что I к0 считают током покоя всего транзистора.

    U б = U э + U см = 0,72 + 1 = 1,72 В

    Теперь с помощью формулы делителя напряжения находим значения резисторов R2 и R3:

    R3 = (R2 + R3) * U б / U = 1714,3 Ом * 1,72 В / 12 В = 245,7 Ом;

    Ближайший номинал резистора 250 Ом;

    R2 = (R2 + R3) — R3 = 1714,3 Ом — 250 Ом = 1464,3 Ом;

    Номинал резистора выбираем в сторону уменьшения, ближайший R2 = 1,3 кОм.

    Заключение

    На выходе каскада мы получаем пропорционально усиленный сигнал и по току и по напряжению, то есть по мощности. Но одного каскада нам не хватит для требуемого усиления, так что придётся добавлять следующий и следующий… И так далее.

    Рассмотренный расчёт довольно поверхностный и такая схема усиления конечно же не используется в строении усилителей, мы не должны забывать о диапазоне пропускаемых частот, искажениях и многом другом.

    • усилитель звуковой частоты
    • транзистор
    • каскад.

    Источник: habr.com

    Зачем нужен усилитель для акустических систем?

    Скажите честно, задумывались ли вы хоть раз, как появляется звук в колонке? Вы наверняка слышали, что для того, чтобы акустика работала и играла музыку, нужен усилитель. В некоторых акустических системах усилитель уже спрятан внутри, но в большинстве случаев в системах используются отдельные устройства – усилители.

    01 Классическая Hi-Fi стерео система.JPG

    На фото: » Black Power Set » — вот так выглядит классический стерео комплект: источник, усилитель и акустическая система

    Конечно, большое количество людей весьма подкованы в этом вопросе и прекрасно разбираются в типах усилителей, их назначении, да и вообще, как собрать хороший акустический комплект. Но мы все чаще сталкиваемся с вопросом от представителей самых разных поколений, а зачем нужен усилитель? И как понять, в каких системах он нужен, а в каких нет? Так давайте разберемся.

    02 Современный ламповый Hi-Fi усилитель.jpg

    На фото: SYNTHESIS Soprano — вот так может выглядеть современный ламповый усилитель высокого класса

    На самом деле, усилитель нужен всегда, когда требуется, чтобы динамик начал звучать – он есть в смартфонах и телевизорах, да даже в «говорящих» детских игрушках.

    В этой статье мы попробуем максимально простым языком ответить на вопросы: «что такое усилитель?» и «зачем он нужен для звука в акустических системах?»

    Как вообще рождается звук?

    Самое простое объяснение принципа работы любого усилителя для акустики кроется в самом процессе, как рождается звук нашей любимой музыки, которую мы слышим из колонок. И вот несколько простых определений для нашей базы:

    Звук – это физическое явление, энергия, которая распространяется в пространстве в виде упругих волн вследствие механических колебаний.

    Т.е. движение какого-то объекта создает колебания в воздухе, эти колебания волнами начинают заполнять пространство вокруг, а наше ухо слышит характерный этому движению звук. Если резко махнуть рукой, то тот самый звук «шух», который вы услышите – это и есть новорожденный звук, появившийся после конкретного механического движения вашей рукой.

    В данной статье частотные диапазоны, амплитуды колебания и прочие термины мы затрагивать намеренно не будем.

    Как появляется звук в колонке?

    Излучатель звука – это устройство для преобразования электрических сигналов в акустические волны (звук) и излучения их в окружающее пространство.

    Излучатели различают сразу нескольких типов по принципу действия, но мы пока остановимся, пожалуй, на самом распространенном и понятном примере – электродинамический громкоговоритель или, просто, «динамик».

    03 Медный динамик акустики Klipsch Reference.jpg

    На фото: фирменный медный динамик Klipsch Reference — таким мы, чаще всего, динамик себе и представляем

    Мы обязательно напишем отдельную и подробную статью об устройстве динамика и принципе его работы. Сейчас же акцентируем внимание на самой сути, простыми словами.

    Электрический сигнал приходит в динамик и дает ему информацию, как ему «толкать воздух», он создает механические колебания и толкает воздух таким образом, чтобы в звуковых волнах мы услышали именно ту музыку, которая и была заложена в исходном электрическом сигнале.

    Сам этот электрический сигнал берется из источника звука – проигрыватель винила, CD-плеер, кассетный плеер, медиа плеер, телевизор, плеер внутри смартфона (и все другое виды, какие только сможете придумать).

    На фото: проигрыватель винила Pro-Ject Essential III — классический аналоговый источник, золотой стандарт Hi-Fi индустрии

    Извлечение звука и его усиление

    Но почему этот сигнал изначально «слаб» и его нужно усиливать? Здесь важна небольшая историческая справка.

    Очень давно процесс извлечения звука и его воспроизведения был полностью механическим. Например, помните громоздкие патефоны с огромным рупором? Так вот, там механическая игла «скребет» канавки пластинки, а считанные колебания усиливаются с помощью раструба-рупора. Когда мы говорим в рупор, наш голос тоже становится громче по такому же принципу.

    Патефон с рупором.jpg

    На фото: патефон с рупором начала XX века

    С развитием Hi-Fi индустрии в середине 20 века в такую чисто механическую схему приходит преобразование этих механических колебаний в электрический сигнал. Как раз в погоне за более высоким качеством воспроизведения звука. Первооткрывателем этого стандарта стала легендарная датская компания Ortofon, которая разработала звукосниматель (картридж проигрывателя винила) как раз для решения этой задачи.

    Полученный с помощью этого картриджа электрический сигнал сам по себе не обладает достаточной мощностью, чтобы быть сразу преобразованным в звук динамиком. Вот тут-то и появляется задача для усиления этого сигнала.

    На фото: Ortofon MC Windfeld Ti — звукосниматель считывает с пластинки механический сигнал и преобразовывает его в электрический

    Причем, на нашем примере, чем громче мы хотим услышать звук, тем более мощный динамик нам нужен, а это значит, что еще более мощный сигнал должен приходить в этот динамик.

    С цифровым сигналом ситуация слегка иная, но схожая. Для того чтобы цифровую музыку в виде электричества подать на динамики, ее сначала нужно преобразовать из цифры в аналог. Для этого используются цифро-аналоговые преобразователи (ЦАП), о них мы много и подробно поговорим в других статьях. Важно то, что и у них электрический сигнал на выходе точно также «слаб» для любого динамика и тоже требует усиления.

    07 Современный CD-плеер класса High End.jpg

    На фото: SYNTHESIS Roma 14DC+ — пример современного CD-проигрывателя класса High End

    Усилитель – это устройство (цепочка устройств), которое позволяет исходному электрическому сигналу от источника обрести достаточную мощность, чтобы быть поданным на динамик акустической системы. И в результате получится громкий и четкий звук, которым мы с вами и будем наслаждаться.

    08 Современный ламповый усилитель Hi-Fi класса.jpg

    На фото: современный ламповый усилитель Hi-Fi класса TAGA Harmony

    Надеемся, что на таких простых примерах нам удалось объяснить, зачем же нужен усилитель и какова его роль в звуке Hi-Fi-системы. Еще лучше вы сможете разобраться в вопросе, поняв внутреннее устройство усилителя, его самые важные параметры, принцип работы, а также, какие типы усилителей бывают и где используются. И об этом мы поговорим с вами в следующих статьях.

    Источник: www.overton.ru

    Оцените статью
    Добавить комментарий