Первичный телевизионный сигнал формируется методом электронной развертки с помощью развертывающего луча телевизионной передающей трубки, преобразующей оптическое изображение в видеосигнал или сигнал яркости.
Подвижное изображение передается в виде мгновенных фотографий – кадров, сменяющих друг друга. Причем для создания эффекта плавного движения передается Zк = 25 кадров в секунду. Каждый кадр разлагается на строки, число которых определяется установленными стандартами.
В широко распространенном стандарте каждый кадр раскладывается на Zc = 625 строк. Чтобы смена кадров на экране приемной телевизионной трубки (кинескопе) была незаметной (без мерцаний), число изображений должно составлять не 50 кадров в секунду. А это требует увеличения скорости развертки, что усложняет оборудование формирования и передачи телевизионных сигналов.
Поэтому для устранения возможного мерцания каждый кадр передается в два этапа: сначала передаются только нечетные строки, а затем – четные. В результате на экране кинескопа создается кадр из двух изображений, называемых полями или полукадрами. Число последних в секунду составляет 50, и смена изображений становится незаметной и, благодаря этому, формируется немерцающее изображение. Вследствие инерционности зрения передачи 50-ти полукадров в секунду воспринимается как слитное движущиеся изображение.
Как правильно принимать сигнал цифрового телевидения DVB-T2
На время смены строк и кадров развертывающий луч приемной трубки должен быть погашен. Для чего на управляющий электрод трубки подается напряжение, равное напряжению видеосигнала при передаче черного поля. Передающая телевизионная камера поэтому дополняется устройствами, которые доводят напряжение сигнала во время обратного хода луча до величины, соответствующей напряжению видеосигнала при передаче черного поля. Возникающие при этом импульсы напряжения, называются гасящими импульсами.
Движение развертывающих лучей передающей и приемной телевизионных трубках должно быть синхронным и синфазным. Для этого от передатчика телевизионного сигнала к его приемнику передаются синхронизующие импульсы: в моменты перехода луча от конца одной строки к началу следующей передаются импульсы строчной синхронизации, а в моменты перехода от конца каждого кадра (полукадра) к началу другого – импульсы кадровой синхронизации. Чтобы синхроимпульсы не создавали помех изображению, их передают в то время, когда луч кинескопа погашен, т.е. во время передачи гасящих импульсов.
Разделение синхронизирующих и гасящих импульсов в приемнике осуществляется по уровню: если гасящие импульсы передаются с уровнем, соответствующим уровню видеосигнала при передаче черного поля, то синхроимпульсы передаются с уровнем, соответствующим уровню видеосигнала, который получался бы при передаче поля “ чернее черного ”.
Обобщенная структурная формирования телевизионного сигнала приведена на рис. 2, где приняты следующие обозначения:
Рис. 2. Обобщенная структурная схема формирования телевизионного сигнала
ГСР – генератор строчной развертки и ГКР – генератор кадровой развертки передающей и приемной телевизионных трубок; ГССИ – генератор строчных синхроимпульсов; ГКСР – генератор кадровых синхроимпульсов; ЗГ – задающий генератор; ГСГИ – генератор строчных гасящих импульсов; генератор кадровых гасящих импульсов; ВУ – видеоусилитель тракта передачи и тракта приема; Пер – передатчик телевизионных сигналов и сигналов звукового сопровождения; ЗС – оборудование формирование сигналов звукового сопровождения тракта передачи и тракта приема; КП – канал передачи; Прм – приемник телевизионных сигналов и сигналов звукового сопровождения; ССИ селектор синхроимпульсов.
Как разделить ТВ сигнал без потерь и подключить несколько телевизоров
Следовательно, первичный телевизионный сигнал, поступающий на вход передатчика телевизионного канала, представляет последовательность импульсов с непрерывно изменяющейся амплитудой (напряжением). Эти импульсы повторяются с частотой следования строк Fc = Zк×Zc = 25×625 = 15625 Гц, а время передачи одной строки равно 1/ Fc = Тс =64 мкс. В промежутках между ними передаются импульсы строчной и кадровой синхронизации, имеющие постоянные амплитуды.
Ширина спектра первичного телевизионного сигнала может быть определена следующим образом. Максимальная частота спектра соответствует передачи чередующихся черных и белых квадратных элементов изображения. Вертикальный размер элементов определяется размером строки.
Учитывая, что ширина кадра относится к его высоте, как 4/3, нетрудно определить число элементов М, содержащихся в одной строке: оно равно М = (4/3)× Zc 2 . Учитывая, что в секунду передается 25 кадров (50 полукадров, состоящих поочередно из четных и нечетных строк изображения), общее число элементов, передаваемое за секунду, будет равно 25 М. Время передачи одного элемента, следовательно, будет равно t = 1/25 М =3/(4×625 2 ×25) = 0,083 мкс. Максимальная частота спектра телевизионного сигнала будет равна Fмакс = 1/2 t = 1/2× 0,083×10 -6 = 6,0 МГц Таким образом, полагая нижнюю граничную частоту спектра телевизионного равной 50 Гц (частота смены полукадров), общая ширина спектра телевизионного сигнала принимается равной 50 Гц … 6,0 МГц с учетом передачи сигналов звукового сопровождения..
Энергетический спектр телевизионного сигнала имеет дискретный характер, максимумы энергии которого сосредоточены вблизи гармоник частоты строк nFc (n =1, 2, 3…). Однако практически вся энергия сигналов яркости сосредоточена в диапазоне от 0…1,5 МГц Эта особенность видеосигнала используется при организации видеотелефонной связи, организуемой в полосе частот от 50 Гц до 1,2…1,5 МГц.
Все рассмотренное выше справедливо для сигналов черно-белого телевидения. Сигналы цветного телевидения имеют некоторые особенности.
В основе цветного телевидения лежат следующие физические процессы:
оптическое разложение многоцветного изображения с помощью специальных цветных светофильтров на три одноцветных изображения в основных цветах – красном (R – red), зеленом (G – green) и синем (B – blue);
преобразование трех одноцветных изображений в передающей телевизионной трубке в соответствующие им три электрических сигнала ER, EG, EB;
передача этих трех электрических сигналов по каналу связи;
обратное преобразование электрических сигналов изображения в специальном кинескопе (приемной телевизионной трубке) в три одноцветных оптических изображения красного, зеленого и синего цветов; каждый цвет характеризуется двумя параметрами: яркостью и цветностью (насыщенностью); напомним, что в черно-белом телевидении при развертке изображения меняется только яркость освещения его отдельных элементов и передаваемый сигнал является сигналом яркости;
оптическое сложение в определенных пропорциях трех одноцветных изображений в одно многоцветное, при котором формируется сигнал яркости Еg.
При наличии сигнала Еg не обязательно передавать три цветовых сигнала: ER, EG,EB. Достаточно передать любые два из них. Обычно в системах цветного телевидения исключается самый широкополосный сигнал – зеленый EG, поскольку в яркостном сигнале содержится 59 % зеленого.
Вычитая из EG и EB полученный сигнал яркости, получают так называемые цветоразностные сигналы. Максимум энергии сигнала яркости группируется в диапазоне нижних частот. Амплитуда составляющих сигнала в диапазоне верхних частот очень малы.
Именно в этом диапазоне яркостного сигнала с помощью поднесущих частот помещаются цветоразностные сигналы, образуя сигналы цветности. Уплотняемые таким способом в общем частотном спектре сигнал яркости и цветоразностные сигналы могут создавать взаимные помехи. Для уменьшения влияния высокочастотных составляющих яркостного сигнала на цветоразностные сигналы поднесущая частота выбирается в верхнем диапазоне частот (где составляющие сигнала яркости очень малы и амплитуда поднесущей берется больше амплитуд этих составляющих). В то же время амплитуда поднесущей должна составлять не более 23 % от максимальной амплитуды яркостного сигнала.
Таким образом, яркостный сигнал и два цветоразностных сигнала занимают стандартную полосу частот телевизионного сигнала без заметного взаимодействия между собой.
На рис. 3 приведен фрагмент осциллограммы одной строки полного телевизионного (ТВ) сигнала с указанием его основных параметров.
Рис. 3. Осциллограмма одной строки полного ТВ – сигнала
Существует несколько систем цветного телевидения, различающихся между собой в основном способами модуляции поднесущих частот цветоразностными сигналами. В нашей стране нашла применение система SEKAM (СЕКАМ) (от франц. Sequentiel couleurs a memoire – последовательная передача цветов с запоминанием).
Особенностью системы является то, что цветоразностные сигналы передаются в частотном спектре яркостного сигнала на вспомогательных цветовых поднесущих методом частотной модуляции. Поскольку модулировать по частоте поднесущую одновременно двумя сигналами невозможно, то в системе SECAM сигналы передаются поочередно через строку.
В течение времени одной строки передается только цветоразностный сигнала ER — Eg, другой – только ER — Eg, во время третьей строки вновь передается ER — Eg и т.д. Чтобы получить в телевизоре цветоразностный сигнал EG — Eg необходимо иметь оба цветоразностных сигнала ER — Eg и ЕВ -Еg одновременно.
Для этого в телевизорах используется линия задержки со временем задержки (запоминанием) на одну строку (64 мкс). Таким образом, каждая передаваема строка запоминается в линии задержки, и к приходу следующей строки ее можно использовать как недостающий сигнала для формирования третьего цветоразностного сигнала. Отметим, что обе поднесущие частоты выбираются четными гармониками частоты строчной развертки. Для передачи сигнала ER — Eg используется частота f0R = 282 Fc = 282 ×15625 = 4,406 МГц и для передачи сигнала ЕВ — Е g используется частота f0B = 272 Fc = 272× 15625 = 4,250 МГц.
Источник: studopedia.su
Эфирное цифровое телевидение: технология передачи сигнала через воздушную среду
ЭЦТВ — это технология трансляции телевизионных программ в цифровом формате через эфирную антенну. Она позволяет получить более качественный сигнал и большее количество каналов, чем аналоговое телевидение. ЭЦТВ также поддерживает интерактивные функции, такие как электронный гид по программам, возможность записи и перемотки телепередач.
Для просмотра на смартфоне требуется скачать ЦТВ, другой вариант — приобрести цифровой тюнер или телевизор со встроенным цифровым тюнером. Такой эфир является одним из способов получения телевизионного сигнала и может использоваться в сочетании с кабельным или спутниковым телевидением.
Принцип работы
Эфирное цифровое телевидение работает по принципу передачи сигнала через воздушную среду с помощью антенны. В отличие от аналогового телевидения, которое использовало аналоговые сигналы, ЭЦТВ использует цифровые сигналы, что позволяет получить более качественное изображение и звук, а также передавать большее количество каналов.
Процесс передачи сигнала начинается с телевизионной станции, где видео- и аудиосигналы цифровых программ сжимаются и преобразуются в цифровой формат. Затем сигнал передается на передающую антенну, откуда он идет на волну радиочастоты.
Прием сигнала осуществляется с помощью антенны, которая располагается на крыше или на окне дома. После того как антенна принимает сигнал, он идет на цифровой тюнер, который преобразует цифровой сигнал в сигнал, который может быть показан на экране телевизора.
Чтобы просмотреть программы в ЭЦТВ, необходимо иметь цифровой тюнер или телевизор со встроенным цифровым тюнером. Цифровой тюнер может быть подключен к телевизору через HDMI или другой подходящий порт.
Преимущества
ЦТВ имеет ряд преимуществ перед аналоговым телевидением и другими способами получения телевизионного сигнала:
- Лучшее качество изображения и звука. ЭЦТВ использует цифровой сигнал, что позволяет получить более четкое и чистое изображение и звук, чем аналоговое телевидение.
- Большее количество каналов. Благодаря цифровой технологии, эфирное цифровое телевидение позволяет передавать большее количество каналов, чем аналоговое телевидение.
- Интерактивные функции. ЭЦТВ поддерживает различные интерактивные функции.
- Бесплатный доступ. В большинстве стран существует бесплатный доступ к эфирному цифровому телевидению, что позволяет сэкономить деньги на платных кабельных или спутниковых каналах.
- Надежность. ЭЦТВ не зависит от интернет-соединения, поэтому он более надежен и стабилен, чем интернет-телевидение.
- Простота установки. Для просмотра эфирного цифрового телевидения не требуется сложная установка или подключение, достаточно просто установить антенну и подключить цифровой тюнер к телевизору.
- Экологичность. Использование ЭЦТВ не требует большого количества электроэнергии, что делает его более экологически чистым способом получения сигнала.
Телевидение является удобным, надежным и доступным способом получения телевизионного сигнала, который обладает рядом преимуществ перед другими способами получения телевизионного контента.
Зачем нужно ЭЦТВ
Эфирное цифровое телевидение является одним из наиболее доступных и удобных способов получения качественного телевизионного контента. Оно позволяет смотреть более чем сотню каналов с высоким качеством изображения и звука, предоставляет интерактивные функции и бесплатный доступ к телевизионному контенту. Благодаря своей надежности и простоте установки, ЭЦТВ стало популярным выбором для многих людей по всему миру, включая РФ и СНГ.
Материалы по теме:
Читайте новости без цензуры там, где вам удобно. Подписывайтесь на Брянского врочуна в Telegram, «ВКонтакте», «Яндекс Дзен», «Одноклассники»
Источник: avchernov.ru
Полный телевизионный сигнал
Передача изображения возможна только в том случае, когда движение электронного луча на экране приемной трубки синхронно и синфазно с движением луча передающей трубки.
Синхронизация осуществляется путем передачи по каналу связи особых синхронизирующих импульсов (строчных и кадровых). Эти импульсы вырабатываются в передающей части тракта (рис. 9.7) синхрогенератором (СГ). Последний управляет работой блока развертки (БР) передающей трубки (ПТ) и одновременно подает синхроимпульсы в видеоусилитель (ВУ), где они смешиваются с видеосигналом. Затем полным сигналом модулируют несущую частоту передатчика (Пер).
Рис. 9. 7. Структурная схема телевизионной системы
В приемнике (Пр) из модулированных колебаний выделяется сигнал яркости, который с помощью приемной трубки — кинескопа (К) — преобразуется в оптическое изображение. В канале синхронизации (КС) происходит отделение синхроимпульсов от сигнала яркости. Выделенные синхроимпульсы используются для синхронизации блока развертки (БР) приемного устройства.
Кроме синхроимпульсов в состав телевизионного сигнала должны также входить гасящие импульсы, которые запирают передающую и приемную трубки во время обратного хода строчной и кадровой разверток.
Таким образом, полный телевизионный сигнал состоит из сигналов яркости (видеосигнала), сигналов строчной и кадровой синхронизации и гасящих импульсов (ГИ).
Для упрощения процесса ознакомления целесообразно рассмотреть сначала структуру ТВ-сигнала во временном интервале, где отсутствуют кадровые гасящие импульсы (КГИ). Форма полного ТВ-сигнала, соответствующего одному периоду строчной развертки, показана на рис. 9.8.
В интервале времени, соответствующем прямому ходу строчной развертки, передается видеосигнал, величина которого пропорциональна яркости передаваемых элементов изображения. Уровень видеосигнала, соответствующий минимальному значению яркости, называется уровнем черного, а уровень, соответствующий максимальному значению яркости, — уровнем белого. Между этими уровнями располагаются все остальные значения видеосигнала, соответствующие промежуточным значениям яркости.
Рис. 9.8. Форма ТВ-сигнала положительной полярности 1 на строчном интервале
Чтобы обратные ходы разверток не были заметны зрителю, необходимо яркость в это время сделать минимальной. Для этой цели в видеосигнал во время обратного хода строчной и кадровой разверток вводятся специальные строчные и кадровые гасящие импульсы (СГИ и КГИ), длительность которых соответствует длительности обратных ходов строчной и кадровой разверток.
Строчные и кадровые синхронизирующие импульсы (ССИ, КСИ) не должны мешать передаче видеосигнала, поэтому их располагают на вершинах гасящих импульсов (ГИ) в так называемой области «чернее черного». Различие между ними состоит в частоте повторения и длительности: частота повторения ССИ соответствует частоте строк, а длительность равна 4,7 мкс, частота следования КСИ равна 50 Гц при длительности 160 мкс.
Структура ТВ-сигнала во время передачи кадровых импульсов показана на рис. 9.9. При чересстрочной развертке первое поле включает строки с 1 по
- 312 и половину 313 строки, а второе поле включает вторую половину строки
- 313 и строки с 314 по 625. Для исключения нарушений строчной синхронизации ССИ следует передавать и во время КГИ, и во время КСИ. ССИ во время передачи КСИ помещаются внутри него в виде врезок, из которых в телевизорах формируются обычные ССИ.
- 1 Замечу, что форма телевизионного сигнала может быть любой, как положительной, так и отрицательной.
Рис. 9.9. Форма ТВ-сигнала отрицательной полярности на кадровом интервале
Источник: bstudy.net