Минимальный участок изображения на экране монитора

Текстовая информация представляет собой набор символов некоторого языка.

Язык – знаковая система представления информации. Множество символов языка образуют алфавит.

Языки бывают естественными и формальными. Естественные языки сложились в процессе общения людей, другими словами, естественные языки – это языки национальных культур. Формальные языки возникли из необходимости введения специальных символов в различных областях науки. Например, язык музыки представляет собой ноты и нотный стан, язык математики – это цифры, арифметические действия, специальные знаки %, / и т.д., язык дорожных правил – это знаки, разметка, сигналы регулировщика и светофора и т.п.

Алфавит компьютерного языка состоит из 256 символов, причем под каждый символ отводится 8 ячеек памяти, другими словами, информационный вес каждого символа равен 8 бит=1 байт. Эти 256 символов включают заглавные и прописные буквы двух алфавитов, математические символы, специальные символы. Все символы упорядочены, каждому символу соответствует некоторое число от 0 до 255.

Таблица ASCII содержит коды первых 128 символов (0-127). (см.приложение)

Остальные позиции заняты символами кириллицы (русскими буквами) и символами псевдографики. Существует несколько таблиц кодировки кириллицы – КОИ 8, Windows 1251-1252 и др. Их отличие в том, что буквам сопоставляются различные коды.

Кодирование графической информации.

Растровое представление графической информации

2.1. Сообщение обучающегося по данной теме

2.2. При этом представлении изображение разбивается на мельчайшие элементы – пиксели.

Пиксель – минимальный участок изображения, которому можно независимым образом задать цвет.

Палитра – множество цветов, используемых в изображении (весь набор красок).

Все множество пикселей образуют растр.

Растр – это прямоугольная сетка пикселей на экране.

Стандартные размеры растра 800 600, 1024 768 и др. Это значит, что по горизонтали на экране монитора умещается 1024 (М) пикселя, а по вертикали 768 (N) пикселей. Тогда общее количество пикселей может быть посчитано как K=MN.

Разрешающей способностью изображения называется отношение числа пикселей на единичный участок изображения. Единица измерения разрешающей способности – dpi (пикселей на дюйм).

Использую известную формулу 2 i =N, где N – мощность алфавита (число цветов в палитре), можно посчитать, сколько бит информации содержит каждый символ (в нашем случае пиксель). Общий объем изображения можно вычислить по формуле V=KI, где K=mn.

Пример 1. Палитра состоит из 65536 цветов (N). Изображение состоит из 64 32 пикселя. Какой объем изображения в Кбайтах?

Решение: В палитре 65536 цветов. Значит, 2 i =65536, откуда i=16 бит. Это значит, что каждый пиксель изображения «весит» 16 бит.

Если известно, что изображение имеет размер 64*32 пикселя, то можно узнать размер (объем) изображения:

V=Ki=64 32 16=2 6 25 24=2 6+5+4 =2 15 бит = 2 15 /2 13 =2 15-13 =2 2 =4 Кбайт

Пример 2. Известно, что объем изображения, записанного в 256-цветной палитре (N), равен 0,5 Кб (V). Каким количеством бит кодируется каждый пиксель (i)? Из скольки пикселей состоит изображение? Какой объем будет у изображения размером 128*64 пикселя (K)?

Еще по теме:  Подключил монитор к ноутбуку изображение не четкое

Решение: Палитра состоит из 256 цветов (N). Значит, под каждый пиксель отводится 2 i =256, т.е. i=8 бит.

Объем изображения равен 0,5 Кбайт = 0,5 2 13 бит. V=KI, значит,

K=V/I=0.5 2 13 /8=0.5 2 13 /2 3 =2 -1+13-3 =2 9 =512 пикселей. Изображение состоит из 512 пикселей.

Объем изображения размером 128 64 пикселя равен V=Ki=mni=128 64 8=27 26 2 3 =2 7+6+3 =2 16 бит = 2 16-3-10 =2 3 Кбайт = 8Кбайт.

3. Кодирование звуковой информации

3.1. Сообщение обучающегося по данной теме

3.2. С начала 90-х годов персональные компьютеры получили возмож­ность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию. С помощью специальных про­граммных средств (редакторов аудиофайлов) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Создаются программы распознавания речи и появляется возможность управления компьютером при помощи голоса.

Звуковой сигнал — это непрерывная волна с изменяющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компью­тер мог обрабатывать непрерывный звуковой сигнал, он должен быть дистретизирован, т.е. превращен в последовательность электрических им­пульсов (двоичных нулей и единиц).

При двоичном кодировании непрерывного звукового сигнала он заменяется серией его отдельных выборок — отсчетов.

Современные звуковые карты могут обеспечить кодирование 65536 различных уровней сигнала или состояний. Для определения количества бит, необходимых для кодирования, решим показательное уравнение:

Таким образом, современные звуковые карты обеспечивают 16-битное кодирование звука. При каждой выборке значению амплитуды звукового сигнала присваивается 16-битный код.

Количество выборок в секунду может быть в диапазоне от 8000 до 48000, т.е. частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 Кгц. При частоте 8 Кгц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 Кгц — качеству звучания аудио-CD. Следует также учитывать, что возможны как моно-, так и стерео-режимы.

Можно оценить информационный объем моном аудио файла длительно­стью звучания 1 секунду при среднем качестве звука (16 бит, 24 Кгц). Для этого количество бит на одну выборку необходимо умножить на количе­ство выборок в 1 секунду:

16 бит 24000 = 384000 бит = 48000 байт или 47 Кбайт

Источник: poisk-ru.ru

Минимальный участок изображения на экране монитора

Школьнику.com

Оцени ответ

  • Алгебра
  • Математика
  • Русский язык
  • Українська мова
  • Информатика
  • Геометрия
  • Химия
  • Физика
  • Экономика
  • Право
  • Английский язык
  • География
  • Биология
  • Другие предметы
  • Обществознание
  • История
  • Литература
  • Українська література
  • Беларуская мова
  • Қазақ тiлi

Показать ещё

Источник: www.shkolniku.com

Кодирование графической информации

Качество кодирования изображения зависит от:

1) частотой дискретизации, т.е. размером фрагментов, на которые делится изображение. Качество кодирования изображения тем выше, чем меньше размер точки и соответственно большее количество точек составляет изображение.

Еще по теме:  На мониторе шлейфы что такое

2) глубиной кодирования, т.е. количество цветов. Чем большее количество цветов, то есть большее количество возможных состояний точки изображения, используется, тем более качественно кодируется изображение (каждая точка несет большее количество информации). Совокупность используемых в наборе цветов образует палитру цветов.

Графическая информация на экране монитора представляется в виде растрового изображения, которое формируется из определенного количества строк, которые в свою очередь содержат определенное количество точек (пикселей).

Пиксель — минимальный участок изображения, цвет которого можно задать независимым образом.

Цветное изображение на экране монитора формируется за счет смешивания трех базовых цветов: красного, зеленого и синего. Такая цветовая модель называется RGB-моделью по первым буквам английских названий цветов (Red, Green, Вluе).

Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности.

Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки, хранящимся в видеопамяти. Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемым для кодирования цвета точки. Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.

Каждый цвет можно рассматривать как возможное состояние точки, тогда количество цветов, отображаемых на экране монитора, может быть вычислено по формуле: N = 2 i , где i — глубина цвета:

Таблица. Глубина цвета и количество отображаемых цветов

Глубина цвета ( I ) Количество отображаемых цветов (N)
8 2 8 = 256
16(НighСоlоr) 2 16 = 65536
24 (Тruе Соlоr) 2 24 = 16777216
32 (Тruе Соlоr) 2 32 = 4 294 967 296

Для того чтобы на экране монитора формировалось изображение, информация о каждой его точке (код цвета точки) должна храниться в видеопамяти компьютера.

Задача 1. Рассмотрим формирование на экране монитора растрового изображения, состоящего из 600 строк по 800 точек в каждой строке (всего 480 000 точек), В простейшем случае (черно-белое изображение без градаций серого цвета) каждая точка экрана может иметь одно из двух состояний — «черная» или «белая», то есть для хранения ее состояния необходим 1 бит.

ЗАДАЧА 2. Рассчитаем необходимый объем видеопамяти для одного из графических режимов, например, с разрешением 800 х 600 точек и глубиной цвета 24 бита на точку.

Всего точек на экране: 800 • 600 = 480 000. Необходимый объем видеопамяти:

24 бит • 480 000 = 11 520 000 бит = 1 440 000 байт = = 1406,25 Кбайт = 1,37 Mбайт.

Аналогично рассчитывается необходимый объем видеопамяти для других графических режимов.

В Windows предусмотрена возможность выбора графического режима и настройки параметров видеосистемы компь­ютера, включающей монитор и видеоадаптер.

Кодирование текстовой информации

Двоичное кодирование текстовой информации в компьютере. Информация, выраженная с помощью естественных и формальных языков в письменной форме, обычно называется текстовой информацией.

Для представления текстовой информации (прописные и строчные буквы русского и латинского алфавитов, цифры, знаки и математические символы) достаточно 256 различных знаков. По формуле можно вычислить, какое количество информации необходимо, чтобы закодировать каждый знак:

Еще по теме:  Отзывы монитор Asus va24ehe

N = 2 i => 256 = 2 i => 2 8 = 2 i => I = 8 битов.

Для обработки текстовой информации на компьютере необходимо представить ее в двоичной знаковой системе. Для кодирования каждого знака требуется количество информации, равное 8 битам, т. е. длина двоичного кода знака составляет восемь двоичных знаков. Каждому знаку необходимо поставить в соответствие уникальный двоичный код из интервала от 00000000 до 11111111 (в десятичном коде от 0 до 255) (табл. 3.1).

Человек различает знаки по их начертанию, а компьютер — по их двоичным кодам. При вводе в компьютер текстовой информации происходит ее двоичное кодирование, изображение знака преобразуется в его двоичный код. Пользователь нажимает на клавиатуре клавишу со знаком, и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код знака). Код знака хранится в оперативной памяти компьютера, где занимает одну ячейку.

В процессе вывода знака на экран компьютера производится обратное перекодирование, т. е. преобразование двоичного кода знака в его изображение.

Различные кодировки знаков. Присваивание знаку конкретного двоичного кода — это вопрос соглашения, которое фиксируется в кодовой таблице. В существующих кодовых таблицах первые 33 кода (десятичные коды с 0 по 32) соответствуют не знакам, а операциям (перевод строки, ввод пробела и т. д.).

Десятичные коды с 33 по 127 являются интернациональными и соответствуют знакам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания.

Десятичные коды с 128 по 255 являются национальными, т. е. в различных национальных кодировках одному и тому же коду соответствуют разные знаки. К сожалению, в настоящее время существуют пять различных кодовых таблиц для русских букв (Windows, MS-DOS, КОИ-8, Mac, ISO (табл. 3.1 и 3.2)), поэтому тексты, созданные в одной кодировке, не будут правильно отображаться в другой.

Таблица 3.2. Десятичные коды некоторых символов в различных кодировках

Например, в кодировке Windows последовательность числовых кодов 221, 194, 204 образует слово «ЭВМ», тогда как в других кодировках это будет бессмысленный набор символов.

К счастью, в большинстве случаев пользователь не должен заботиться о перекодировках текстовых документов, так как это делают специальные программы-конверторы, встроенные в операционную систему и приложения.

В последние годы широкое распространение получил новый международный стандарт кодирования текстовых символов Unicode, который отводит на каждый символ 2 байта (16 битов). По формуле можно определить количество символов, которые можно закодировать согласно этому стандарту:

N = 2 i = 2 16 = 65 536.

Такого количества символов оказалось достаточно, чтобы закодировать не только русский и латинский алфавиты, цифры, знаки и математические символы, но и греческий, арабский, иврит и другие алфавиты.

Дата добавления: 2019-02-22 ; просмотров: 310 ; Мы поможем в написании вашей работы!

Источник: studopedia.net

Оцените статью
Добавить комментарий