Схема высоковольтного трансформатора телевизора

Для самостоятельного изготовления флокатора, пистолета порошковой покраски или электростатической коптильни требуется источник высокого напряжения. И если первые два устройства требуют 75-100 киловольт, то высоковольтный генератор для коптильни работает при 15-20.

В сети есть множество схем высоковольтных генераторов сделанных с использованием строчных трансформаторов от мониторов, телевизоров или автомобильных катушек зажигания. В большинстве своём их схемотехника удручает – как правило это простейшие обратноходовые преобразователи, а значит транзистор в них будет работать в роли кипятильника т.к. для новичка наверняка не имеющего осциллографа рассчитать снаббер практически не реально.

Схемы из прошлого века на тиристорах с питанием от сети 220 вольт опасны и в случае неосторожности могут привести к печальным последствиям. Мы же сделаем резонансный полумост на ТДКС .

Давайте посмотрим схему:

Схема высоковольтного генератора

Высоковольтные диоды в строчном трансформаторе ТДКС.Можно ли их достать?

Список компонентов:

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.lay6[0,03 MB]

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

На фото ошибка, был неправильно подключен конденсатор С6, делать согласно схеме и файла платы (исправлено)

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор ~30kV 470pf – 2.2n и выходной токоограничительный резистор.

Источник: humka.ru

Источник высокого напряжения, автогенератор

Коронный разряд

Собрать генератор высокого напряжения в домашних условиях несложно, в этой статье рассмотрим простую автогенераторную схему, отличительными особенностями которой является простота и большая выходная мощность.

Автогенератор представляет собой самовозбуждающуюся систему с обратной связью, которая в свою очередь обеспечивает поддержание колебаний. В такой системе частота и форма колебаний определяются свойствами самой системы, а не задаются внешними параметрами.

Схема устройства представлена ниже:
Двухтактный автогенератор, схема
Внешний вида автогенератораУстройство представляет собой двухтактный автогенераторный преобразователь. Полевые транзисторы VT1, VT2 включаются поочередно, например, если включен транзистор VT1, напряжение на его стоке уменьшается, открывается диод VD4, тем самым напряжение на затворе транзистора VT2 уменьшается, не давая ему открыться. Защитные диоды VD2, VD3 предохраняют затворы транзисторов от перенапряжения. Форма импульсов на трансформаторе T1 близка к синусоидальной.

Еще по теме:  Подключить Виндовс 11 к телевизору

Строчный трансформатор

Основным элементом схемы является высоковольтный трансформатор T1. Лучше всего подходят строчные трансформаторы (ТВС) от ламповых черно-белых телевизоров советского производства. Магнитопровод у таких трансформаторов ферритовый, состоит из двух П-образных частей.

Высоковольтная вторичная обмотка выполнена в виде цельной пластмассовой катушки, как правило, расположена отдельно от блока первичных обмоток. Я использовал магнитопровод от строчного трансформатора марки ТВС-110Л4 (магнитная проницаемость 3000НМ), высоковольтную обмотку снял от трансформатора ТВС-110ЛА. Родную первичную обмотку необходимо демонтировать, и намотать новую, из эмалированного медного провода диаметром 2мм, всего 12 витков с отводом от середины (6+6). Во время сборки между П-образными частями магнитопровода, в месте стыка, необходимо проложить картонные прокладки, толщиной примерно в 0,5мм, для уменьшения насыщения магнитопровода.

Дроссель L1 намотан на феритовом Ш-образном магнитопроводе, 40-60 витков эмалированного медного провода диаметром 1,5мм, между стыками магнитопровода проложена прокладка толщиной 0,5мм. В качестве сердечника можно использовать ферритовые кольца или П-образную часть магнитопровода строчного трансформатора.

Конденсатор C3 состоит из 6-ти параллельно соединенных конденсаторов марки К78-2 0,1мк х 1000В, они хорошо подходят для работы в высокочастотных контурах. Резисторы R1,R2 лучше ставить мощностью не менее 2Вт. Высокочастотные диоды VD4, VD5 можно заменить на HER202, HER303 (FR202,303).

Для питания устройства подойдет нестабилизированный блок питания с напряжением 24-36В, и мощностью 400-600Вт. Я использую трансформатор ОСМ-1 (габаритная мощность 1кВт) с перемотанной вторичной обмоткой на 36В.

Электрическая дуга зажигается с расстояния 2-3мм между выводами высоковольтной обмотки, что примерно соответствует напряжению 6-9кВ. Дуга получается горячей, толстой и тянется до 10см. Чем длиннее дуга, тем больше потребляемый ток от источника питания. В моем случае максимальный ток достигал значения 12-13А при напряжении питания 36В. Чтобы получить такие результаты, нужен мощный источник питания, в данном случае это имеет основное значение.

Для наглядности я сделал лестницу “Иакова” из двух толстых медных проводов, в нижней части расстояние между проводниками составляет 2мм, это необходимо для возникновения электрического пробоя, выше проводники расходятся, получается буква “V”, дуга, зажигается внизу, нагревается и поднимается вверх, где обрывается. Я дополнительно установил небольшую свечу под местом максимального сближения проводников, для облегчения возникновения пробоя. Ниже на видеоролике продемонстрирован процесс движения дуги по проводникам.

Коронный разряд на фольге

С помощью устройства можно пронаблюдать коронный разряд, возникающий в сильно неоднородном поле. Для этого я вырезал из фольги буквы и составил фразу Radiolaba, поместив их между двумя стеклянными пластинами, дополнительно проложил тонкий медный провод для электрического контакта всех букв. Далее пластины кладутся на лист фольги, который подключён к одному из выводов высоковольтной обмотки, второй вывод подключаем к буквам, в результате вокруг букв возникает голубовато-фиолетовое свечение и появляется сильный запах озона. Срез фольги получается острым, что способствует образованию резко неоднородного поля, в результате возникает коронный разряд.

При поднесении одного из выводов обмотки к энергосберегающей лампе, можно увидеть неравномерное свечение лампы, здесь электрическое поле вокруг вывода вызывает движение электронов в газонаполненной колбе лампы. Электроны в свою очередь бомбардируют атомы и переводят их в возбужденные состояния, при переходе в нормальное состояние происходит излучение света.

Единственным недостатком устройства является насыщение магнитопровода строчного трансформатора и его сильный нагрев. Остальные элементы нагреваются незначительно, даже транзисторы греются слабо, что является важным достоинством, тем не менее, их лучше установить на теплоотвод. Я думаю, даже начинающий радиолюбитель при желании сможет собрать данный автогенератор и устроить эксперименты с высоким напряжением.

Лестница ИаковаЛестница ИаковаРазряд в лампе накаливанияЭлектрическая дугаСвечение ЭСЛ лампыЭлектрическая дуга

Ниже представлен видеоролик демонстрирующий работу автогенератора:


Источник: radiolaba.ru

Генератор высокого напряжения из строчника своими руками

No Image

Привет всем любителям самоделок. В этой статье я расскажу, как сделать генератор высокого напряжения своими руками, применение которого достаточно широкое, его можно будет использовать в качестве питания газоразрядных ламп, озонатора для травления крыс. Также он идеально подойдет для создания шокера или же электроподжига газа. Думаю многим стало интересно как это собрать, поэтому не затягиваем и переходим к сборке, самое же устройство основано на блокинг-генераторе.

Еще по теме:  Телевизор lentel lts1602 характеристики

Но перед прочтением подробной сборки предлагаю посмотреть видео, где можно наглядно увидеть принцип действия самоделки и понять, а надо ли оно мне.

Для того, чтобы сделать своими руками генератор высокого напряжения, понадобится:
* Транзистор IRF3205 с радиатором
* Аккумулятор типа 18650
* Умножитель
* Резистор на 100 Ом
* Паяльник, припой, флюс
* Строчный трансформатор ТВС-110ПЦ15
* Обмоточный провод, диаметр 1 мм и длиной 1 м
* Канцелярский нож или скальпель
* Провода

Вот и все, что нужно для изготовления данной самоделки, думаю не так и сложно все это найти, учитывая, что почти все детали были взяты из старого телевизора.

Шаг первый.
Данный трансформатор работает по принципиальной схеме, которая достаточна легка в повторении любому начинающему в этом деле.

Из данной статьи вы узнаете как получить высокое напряжение, с высокой частотой своими руками. Стоимость всей конструкции не превышает 500 руб, при минимуме трудозатрат.

Для изготовления вам понадобится всего 2 вещи: — энергосберегающая лампа (главное, чтобы была рабочая схема балласта) и строчный трансформатор от телевизора, монитора и другой ЭЛТ техники.

Энергосберегающие лампы (правильное название: компактная люминесцентная лампа) уже прочно закрепились в нашем быту, поэтому найти лампу с нерабочей колбой, но с рабочей схемой балласта я думаю не составит труда.
Электронный балласт КЛЛ генерирует высокочастотные импульсы напряжения (обычно 20-120 кГц) которые питают небольшой повышающий трансформатор и т.о. лампа загорается. Современные балласты очень компактны и легко помещаются в цоколе патрона Е27.

Балласт лампы выдает напряжение до 1000 Вольт. Если вместо колбы лампы подключить строчный трансформатор, то можно добиться потрясающих эффектов.

Немного о компактных люминесцентных лампах

Блоки на схеме:
1 — выпрямитель. В нем переменное напряжение преобразуется в постоянное.
2 — транзисторы, включенные по схеме push-pull (тяни-толкай).
3 — тороидальный трансформатор
4 — резонансная цепь из конденсатора и дросселя для создания высокого напряжения
5 — люминесцентная лампа, которую мы заменим строчником

КЛЛ выпускаются самой различной мощности, размеров, форм-факторов. Чем больше мощность лампы, тем более высокое напряжение нужно приложить к колбе лампы. В данной статье я использовал КЛЛ мощностью 65 Ватт.

Большинство КЛЛ имеют однотипную схемотехнику. И у всех имеется 4 вывода на подключение люминесцентной лампы. Необходимо будет подсоединить выхода балласта к первичной обмотке строчного трансформатора.

Немного о строчных трансформаторах

Строчники также бывают разных размеров и форм.

Основной проблемой при подключении строчника, является найти 3 необходимых нам вывода из 10-20 обычно присутствующих у них. Один вывод — общий и пара других выводов — первичная обмотка, которая будет цепляться к балласту КЛЛ.
Если сможете найти документацию на строчник, или схему аппаратуры, где он раньше стоял, то ваша задача существенно облегчится.

Внимание! Строчник может содержать остаточное напряжение, так что перед работой с ним, обязательно разрядите его.

Итоговая конструкция

На фото выше вы можете видеть устройство в работе.

И помните, что это постоянное напряжение. Толстый красный вывод — это «плюс». Если вам нужно переменное напряжение, то нужно убрать диод из строчника, либо найти старый без диода.

Возможные проблемы

Когда я собрал свою первую схему с получением высокого напряжения, то она сразу же заработала. Тогда я использовал балласт от лампы мощностью 26 Ватт.
Мне сразу же захотелось большего.

Я взял более мощный балласт от КЛЛ и в точности повторил первую схему. Но схема не заработала. Я подумал, что балласт сгорел. Обратно подключил колбы лампы и включил в сеть. Лампа загорелась.

Значит дело было не в балласте — он был рабочий.

Немного поразмыслив я сделал вывод, что электроника балласта должны определять нить накала лампы. А я использовал только 2 внешних вывода на колбу лампы, а внутренние оставил «в воздухе». Поэтому я поставил резистор между внешним и внутренним выводом балласта. Включил — схема заработала, но резистор быстро сгорел.

Еще по теме:  Как снять подставку с телевизора LG 32lh2000

Я решил использовать конденсатор, вместо резистора. Дело в том, что конденсатор пропускает только переменный ток, а резистор и переменный и постоянный. Также, конденсатор не нагревался, т.к. давал небольшое сопротивление на пути переменного тока.

Конденсатор работал великолепно! Дуга получилась очень большой и толстой!

Итак если у вас не заработала схема, то скорее всего 2 причины:
1. Что-то не так подключили, либо на стороне балласта, либо на стороне строчного трансформатора.
2. Электроника балласта завязана на работе с нитью накала, а т.к. ее нет, то заменить ее поможет конденсатор.

Используйте конденсатор на соответствующее напряжение! У меня был на 400 Вольт, взятый из балласта другой энергосберегающей лампы.

При проведении опытов с высоким напряжением будьте предельно осторожны! Высокое напряжение опасно для жизни!

Лампа мощностью 65 Ватт, обеспечивает ток порядка 65 мА (65Ватт/1000В). А сила тока более чем 50 мА, смертельна опасна для жизни и вызывает остановку сердца!

Для самостоятельного изготовления флокатора, пистолета порошковой покраски или электростатической коптильни требуется источник высокого напряжения. И если первые два устройства требуют 75-100 киловольт, то высоковольтный генератор для коптильни работает при 15-20.

В сети есть множество схем высоковольтных генераторов сделанных с использованием строчных трансформаторов от мониторов, телевизоров или автомобильных катушек зажигания. В большинстве своём их схемотехника удручает – как правило это простейшие обратноходовые преобразователи, а значит транзистор в них будет работать в роли кипятильника т.к. для новичка наверняка не имеющего осциллографа рассчитать снаббер практически не реально.

Схемы из прошлого века на тиристорах с питанием от сети 220 вольт опасны и в случае неосторожности могут привести к печальным последствиям. Мы же сделаем резонансный полумост на ТДКС .

Давайте посмотрим схему:

Схема высоковольтного генератора

Список компонентов:

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.lay6[0,03MB]

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор

30kV 470pf – 2.2n и выходной токоограничительный резистор.

Источник: stroimrem.ru

Оцените статью
Добавить комментарий