Схемы инверторов LCD телевизоров

В ЖК мониторах для подсветки традиционно используются люминесцентные лампы с холодным катодом (далее — CCFL — cold cathode fluorescent lamp). Они питаются от DC/AC-конвертора (далее — инвертор), формирующего из низкого нестабилизированного постоянного напряжения 7. 20 В высокое стабилизированное переменное 500. 800 В/50. 75 кГц. Эти узлы потребляют от 30 до 50 % всей энергии, потребляемой монитором.

По этой причине, подтвержденной практикой сервисных центров, инвертор является источником большинства неисправностей ЖК мониторов. Все это приводит к необходимости крайне серьезного отношения со стороны разработчиков инверторов к выбору его схемотехники, а также используемой элементной базы. На сегодняшний день существует несколько основных вариантов топологии инверторов, о чем и рассказывается в данном обзоре.

Топологии инверторов питания ламп подсветки

Разработчики, как правило, используют два базовых варианта топологии инверторов питания ламп задней подсветки — двухступенчатую и одноступенчатую. Рассмотрим эти варианты подробнее.

Диагностика инвертора телевизора

Двухступенчатая топология подразумевает наличие в составе инвертора так называемого DC/DC-преобразователя (рис. 1), конвертирующего входное постоянное напряжение питания инвертора, которое зачастую является нестабилизированным, в стабилизированное напряжение с фиксированным уровнем. Так, например, в мониторах, блок питания которых реализован в виде внешнего сетевого адаптера, входное напряжение инвертора может иметь слишком широкий диапазон значений 7. 20 В, что определяется величиной и стабильностью сетевого переменного напряжения. Это может стать причиной нестабильной яркости изображения. Использование же DC/DC-преобразователя позволяет получить стабильное фиксированное напряжение, например, +5 В, из которого уже и будет формироваться импульсное напряжение для ламп подсветки.

Двухступенчатая топология инвертора с AC/DC-преобразователем

Рис. 1. Двухступенчатая топология инвертора с AC/DC-преобразователем

Таким образом, применение двухступенчатой топологии инвертора способно повысить стабильность яркости изображения. Но у двухступенчатой топологии имеется один серьезный недостаток — значительно большее потребление энергии и большие потери мощности в DC/DC-преобразователе. В последнее время разработчики, по возможности, стараются отказываться от такой топологии инверторов. Если же говорить о ЖК дисплеях, применяемых в ноутбуках, где экономия энергии имеет первоочередное значение, то данная схемотехника инверторов практически не используется.

Структурная схема инвертора с двухступенчатой топологией представлена на рис. 2.

Структурная схема инвертора, выполненного по двухступенчатой топологии

ЖК телевизор. Как проверить трансформаторы инвертора. Курсы телемастеров.

Рис. 2. Структурная схема инвертора, выполненного по двухступенчатой топологии

Примечание. DC/DC-преобразователь традиционно представляет собой импульсный регулятор напряжения, обеспечивающий стабилизацию выходных напряжений методом широтно-импульсной модуляции (ШИМ). Для управления таким импульсным регулятором в состав инвертора вводится управляющая микросхема — ШИМ контроллер, которая кроме стабилизации выходного напряжения DC/DC-преобразователя может выполнять и другие функции, например, токовую защиту, регулировку яркости ламп и т.д.

Одноступенчатая топология подразумевает наличие в составе инвертора только одного импульсного преобразователя (рис. 3). Входное постоянное напряжение преобразуется в высокочастотное импульсное напряжение, которым питаются лампы задней подсветки. Стабильность яркости в этом случае обеспечивается методом ШИМ.

Энергетические характеристики данного варианта топологии гораздо лучше, и инвертор имеет более высокий КПД. Кроме того, стоимость одноступенчатой схемы гораздо ниже, так как отпадает необходимость в использовании достаточно мощного и дорогого ключевого транзистора в составе DC/DC-преобразователя. Все это в совокупности способствует более широкому применению в современных ЖК дисплеях инверторов с одноступенчатой топологией.

Одноступенчатая топология инвертора

Рис. 3. Одноступенчатая топология инвертора

Структурная схема инвертора с одноступенчатой топологией представлена на рис. 4.

Структурная схема инвертора с одноступенчатой топологией

Рис. 4. Структурная схема инвертора с одноступенчатой топологией

В рамках двух рассмотренных топологий существует еще четыре варианта схемотехники импульсных преобразователей:

— Преобразователь Ройера (Royer) (рис. 5).

— Двухтактный преобразователь (Push-Pull) (рис.6).

— Полумостовой преобразователь (Half Bridge) (рис. 7).

— Мостовой преобразователь (Full Bridge) (рис. 8).

Преобразователь Ройера (Royer)

Рис. 5. Преобразователь Ройера (Royer)

Двухтактный преобразователь (Push-Pull)

Рис. 6. Двухтактный преобразователь (Push-Pull)

Полумостовой преобразователь (Half Bridge)

Рис. 7. Полумостовой преобразователь (Half Bridge)

Мостовой преобразователь (Full Bridge)

Рис. 8. Мостовой преобразователь (Full Bridge)

Каждый из представленных вариантов преобразователя имеет свои достоинства и недостатки, которые отражены в табл. 1.

Таблица 1. Сравнение различных топологий импульсных преобразователей

Показатели для соответствующего варианта схемотехники

Малое в широком диапазоне входных напряжений

Среднее в широком диапазоне входных напряжений

Хорошее в широком диапазоне входных напряжений

Значение КПД в широком диапазоне входных напряжений

Возможность организации защиты

Примечание. Крест-фактор нагрузки — показатель, характеризующий способность источника электроэнергии питать нелинейную нагрузку, потребляющую импульсный ток. Он равен отношению амплитуды импульсного тока в нелинейной нагрузке к амплитуде тока гармонической формы при эквивалентной потребляемой мощности.

Анализ данных, представленных в табл. 1, показывает, что наиболее предпочтительным вариантом схемотехники инвертора является мостовая схема, которая, наряду с прочими преимуществами, имеет наилучшее значение КПД, что обусловлено следующими особенностями:

— в схеме минимизированы скачки тока и напряжения за счет применения в качестве ключей МОП транзисторов, имеющих малое сопротивление открытого канала и, как результат, малые потери мощности;

— на вторичных обмотках импульсного трансформатора всегда формируется синусоидальное напряжение правильной формы во всем диапазоне входных напряжений, что является результатом симметричного (двунаправленного) тока в первичной обмотке;

— коэффициент передачи трансформатора имеет максимальное значение, что является результатом более низкого значения тока первичной обмотки и высокого значения КПД.

Именно мостовая схема инвертора рекомендована группой VESA Inverter SIG для применения в ноутбуках. Естественно,что мостовой вариант преобразователя, являясь наиболее экономичным и надежным, все чаще используется и в инверторах обычных ЖК мониторов.

Примечание. Группа VESA Inverter SIG, действующая в рамках ассоциации VESA, занимается вопросами стандартизации инверторов задней подсветки.

Прежде чем переходить к рассмотрению особенностей различных вариантов схемотехники инверторов, обсудим общие вопросы, связанные с их функционированием. Представленные ниже общие рекомендации к схемотехнике инверторов выработаны группой VESA Inverter SIG. Все эти рекомендации ориентированы, в первую очередь, на инверторы ноутбуков.

Итак, основной функцией инверторов является преобразование напряжения постоянного тока в импульсное высокочастотное и высоковольтное напряжение, прикладываемое непосредственно к лампам CCFL. Для надежного функционирования инверторов необходимо наличие определенного набора различных защит от аварийных режимов работы. Кроме того, для обеспечения регулировки яркости изображения в инверторе должна быть предусмотрена возможность изменения тока ламп.

Рекомендации группы VESA Inverter SIG по защите инверторов

Инверторы питания CCFL-ламп задней подсветки должны иметь, как минимум, следующий набор встроенных защит от аварийного функционирования:

— Защиту от обрыва ламп. Если цепь одной из ламп обрывается, то инвертор должен иметь возможность регулировать напряжение на остальных лампах в течение заданного периода времени, после чего должен выключиться.

— Защиту от короткого замыкания в лампе. Инвертор не должен работать, когда лампа CCFL оказывается закороченной.

— Защиту от короткого замыкания в цепи. В соответствии с международными требованиями (стандарт UL1950) ток вторичной стороны инвертора при коротком замыкании не должен превышать величины 0,7 x Freq (мА), где Freq — частота выходного напряжения (кГц).

— Защиту от превышения тока через ключевые транзисторы инвертора. В рекомендациях группы VESA Inverter SIG указывается, что от превышения тока должен быть защищен каждый МОП-транзистор первичной части мостового инвертора. При неисправностях и ошибках управляющей логики инвертора возможна ситуация, при которой МОП-транзисторы первичной части могут самопроизвольно открываться. Это может стать причиной коротких замыканий в первичной части, т.е. может стать причиной «выгорания»транзисторов и других неисправностей. Поэтому управляющие каскады инвертора должны быть построены таким образом, чтобы исключать появление таких ситуаций.

Еще по теме:  Какая скорость должна быть для телевизора

Регулировку яркости ламп задней подсветки в различных документах обозначают Dimming (затемнение, уменьшение яркости). Производители инверторов реализуют ее различными методами, однако, на этот счет также имеются вполне определенные рекомендации группы VESA Inverter SIG, а именно, рекомендуется два варианта регулировки яркости ламп:

Аналоговая регулировка подразумевает, что на вход инвертора подается напряжение постоянного тока, величина которого изменяется управляющим микроконтроллером, когда пользователь регулирует яркость. Диапазон изменения яркости в этом случае может достигать соотношения 3:1. Рекомендуется использовать так называемую «отрицательную полярность» управляющего сигнала. Это означает, что управляющее напряжение величиной 2 В соответствует минимальной яркости изображения, а нулевое напряжение — максимальной.

Импульсная регулировка подразумевает, что на вход инвертора подаются импульсы, длительность которых изменяется при регулировке яркости, т.е. для регулировки используется метод широтноимпульсной модуляции. Этот метод позволяет регулировать яркость ламп в диапазоне 10.

100 %. В случае импульсной регулировки яркости также рекомендуется использовать «отрицательную полярность» импульсов. Это означает, что если вместо импульсов управляющий сигнал будет представлять собой постоянное напряжение величиной, например, 2 В, то это будет соответствовать 10% значению яркости, а нулевой уровень управляющего сигнала — 100% значению яркости.

Промежуточные значения яркости определяются соотношением высокого и низкого уровней импульсного сигнала, т.е. его скважностью (см. рис. 3). Рекомендуемая частота управляющего импульсного сигнала должна составлять 200 Гц, хотя разработчики инверторов могут использовать и другие значения частоты — единицы или даже десятки кГц. Кроме того, для «интеллектуальных» инверторов может предусматриваться возможность программирования этой частоты, т.е. управляющую микросхему инвертора программируют под параметры входного импульсного регулирующего сигнала.

Также в составе инвертора должна быть предусмотрена функция программного отключения (Soft-Off) и включения (Soft-On) для предотвращения слышимых звуковых колебаний во время проведения регулировки.

Стандартизации подверглись и электрические характеристики инверторов, но эта часть рекомендаций, кстати сказать, является наиболее понятной в стремлении к унификации инверторов. Итак, современный инвертор питания CCFL-ламп задней подсветки, удовлетворяющий стандартам и рекомендациям VESA Inverter SIG, должен иметь электрические характеристики и параметры, приведенные в таблице 2.

Таблица 2. Рекомендуемые электрические характеристики и параметры инверторов

Диапазон рабочих частот

Источник: www.radioradar.net

Инверторы LCD мониторов

Инвертор LCD монитора — это логически законченный модуль и служит для преобразования низкого постоянного напряжения в высокое переменное для работы с лампами CCFL, которые служат подсветкой в LCD матрице. Как правило инвертор конструктивно выполнен совместно с блоком питания.

В интернете от сайта к сайту, кочует статья об инверторах, найти ее довольно легко, в Google наберите «схема инвертора LCD монитора».

Рис. Скрин статьи про инвертора LCD мониторов.

Статья очень интересная, сам с удовольствием прочитал, однако рассмотренные схемы, лично я, давно не встречал при ремонте LCD мониторов, это не умаляет достоинства рассматриваемой статьи, теория не может устареть, устарела элементная база. Поэтому речь будет идти только о тех инверторах, с которыми сталкивались в процессе ремонта в нашей мастерской в текущее время.

Цепи фильтрации инвертора LCD монитора.

Рис. Структурная схема классического инвертора

Рассматриваемый рисунок представляет собой лишь структурную схему, котороя может отличаться от реального исполнения. Например: питание некоторых типов ШИМ-контроллеров инвертора равно 5В, или цепь обратной связи берется из точки «B» и т.п., но для упрощения структурной схемы эти нюансы мы рассматривать не будем.

Следует отметить, структурная схема рассматриваемого инвертора, на самом деле является упрощенным вариантом схемы, «так как должно быть на самом деле». Часть мониторов не имеет на своем борту даже установочные отверстия под элементы Lфильтр, Cинв, Cкт1, Cкт2, другая часть имеет на плате установочные отверстия под эти элементы, но на их место ни чего не устанавливается, а вместо Lфильтра устанавливается перемычка.

Рассмотрим каждый элемент отдельно. По опыту скажу, уже после некоторого количество ремонтов Вы будете видеть все элементы схемы даже не переворачивая плату, чтобы посмотреть расположение дорожек и не открывая схемы на инвертор. Как правило неисправными элементами, при поломке монитора являются конденсаторы, и характерным признаком неисправности является вздутие.

Конденсатор на выходе блока питания Cбп.

В самом жестком режиме работает конденсатор Cбп, вне зависимости исправный или неисправный блок питания. Ни один технолог, какой бы он не был экономист не исключит конденсатор Cбп из схемы, без конденсатора Сбп инвертор просто не запустится на старте, поэтому этот элемент всегда есть на плате даже самого дешевого монитора. Вопрос только в его емкости и напряжении.

Выход из строя (вспучивание) конденсатора Сбп можно отнести к прогнозируемой поломке монитора.

Наличие керамического конденсатора несколько увеличивает срок службы конденсатора Сбп, использование LOW ESR конденсаторов, также продляет срок службы конденсатора в этом участке цепи. Какой бы емкости конденсатор не стоял на этом месте (220мкФ, 470мкФ, 680мкФ) и напряжением (10В,16В) на место этого конденсатора рекомендуется ставить 1000мкФ*25В. Внимание если рабочее напряжение можно увеличивать (35В, 50В,63В), то емкость этого конденсатора свыше 1000мкФ увеличивать не рекомендуется, есть шанс, что пусковому конденсатору блока питания просто не хватит емкости для запуска блока питания, в некоторых вариантах блока питания.

В реальности перед конденсатором Сбп стоит еще один конденсатор, который работает еще более в жестких условиях, но про него мы поговорим в другом материале.

Катушка индуктивности Lфильтр.

Катушка хорошо справляется с выбросами на входном питающем напряжении с блока питания. В современных мониторах установка такой катушки является непозволительной роскошью, и вместо нее стоит перемычка. Схемотехнически катушка индуктивности Lфильтр разделяет блок питания от инвертора, а практически сглаживает выходное напряжение с БП. При удалении катушки индутивности у нас появляется возможность нагрузить блок питания на эквивалентную нагрузку, лично я использую автомобильную лампу дальний/ближний свет. Если блок питания проваливается на эквивалентной нагрузке, то начинаем ремонтные работы с блоком питания, для дальнейшей диагностики можно временно подключить инвертор от внешнего блока питания (само собой Lфильтр удален).

Обратите внимание в некоторых исполнениях блоков питания инверторов с точки «B» (см. рис. Структурная схема классического инвертора) снимается напряжение обратной связи. И тогда Вам доступен только вариант проверки — запуск с внешнего блока питания.

Случается катушки индуктивности Lфильтр — нет. Встречались экземпляры мониторов с полупроводниковым и простым предохранителем, перемычкой и даже без всякого заменителя Lфильтр.

Если на плате установлена катушка индуктивности Lфильтр и мы наблюдаем вспученные конденсаторы со стороны инвертора, то есть конденсаторы установленные после Lфильтр, а конденсаторы установленные до Lфильтр не вспученные, есть повод задуматься на исправностью инвертора. В таком случае Lфильтр защищает конденсаторы блока питания от ВЧ составляющей инвертора.
Еще по теме:  Что такое развертка в телевизоре

Конденсаторы фильтра питания инвертора Синв, Скт1, Скт2.

Отличительная особенность данных конденсаторов — они устанавливаются, как можно ближе к своему потребителю. Как правило выход из строя Скт1, Скт2 говорит о возможной неисправности КТ1, КТ2 соотвественно. Емкость конденсаторов Скт1, Скт2, Синв обычно (150-600) мкФ на 35В если учесть, что остальные конденсаторы в фильтре стоят на 25в, то найти этот конденсатор(ы) не составляет труда.

Замена неисправных конденсаторов Скт1, Скт2, в некоторых случаях, может привести у выходу из строя ключевого транзистора. Такое развитие событий характерно для транзисторов в SMD исполнении, поэтому перед включением обязательно запишите для себя название ключевого транзистора, иначе если транзистор сгорит, то название будет прочесть сложно. Это не очень большая проблема, так как второй транзистор имеет такую же маркировку.

Ключевые транзисторы КТ1, КТ2.

Рассматривать будем только сдвоенные транзисторы в одном корпусе, корпус SMD. Горят они чаще, и чаще приходится искать к ним аналоги. Зная принцип построения схем инверторов аналоги подбирать совсем несложно.

Рис. Типы применяемых транзисторных сборок в инверторах LCD мониторов

Хотелось бы выделить следующий момент — в сборках транзисторов одного типа более универсальны сборки транзисторов, у которых стоки разделены, именно их рекомендуется закупать на склад, так как у них высокая взаимозаменяемость.

Виды исполнения инверторов LCD мониторов.

Инвертор выполненный по принципу двухтактного преобразователя. На цикле 1 ток течет по одной обмотке, на цикле 2 ток течет по второй обмотке.

Рис. Двухтактный инвертор

Реализация двухтактного инвертора на примере инвертора ILPI-014.

Рис. Инвертор ILPI-014.

Инвертор выполнен на основе специализированного ШИМ-контроллера OZ9938 разработанного для управления инвертором с CCFL лампами. В инверторе 4 лампы и четыре ключевых транзистора. Нас интересуют конденсаторы С509 (150мкф*35В) и С522 (150мкф*35В). Это как раз те самые Скт1 и Скт2. На схеме не видно, но на плате они стоят в непосредственной близости от ключевых транзисторов.

Рис. Плата ILPI-014 (блок питания и инвертор).

Источник: zipstore.ru

Ремонт ЖК-мониторов (с инвертором ламп подсветки).

Для того, чтобы на профессиональном уровне выполнять ремонт ЖК- монитора, необходимо в первую очередь понимать, из каких основных электронных узлов и блоков состоит данное устройство и какие функции выполняет каждый элемент электронной схемы. Многие считают, что успех в ремонте любого прибора заключается в наличии принципиальной схемы конкретного аппарата, но надо помнить, что «знание некоторых основных принципов заменяет нам незнание множества мелких фактов» (на самом деле, при определенном уровне подготовки принципиальная схема нужна не всегда).

Жидкокристаллический монитор состоит из нескольких основных функциональных блоков: ЖК-панель, плата управления, блок питания и инвертор ламп подсветки.

Жидкокристаллическая панель. Жидкокристаллическая панель представляет собой завершённое устройство. Производители жидкокристаллических мониторов, как правило, используют в своих изделиях ЖК-панели выпускаемые небольшим числом производителей, как готовые комплектующие изделия для ЖК-мониторов.

В ЖК-панель, кроме жидкокристаллической матрицы, встраивают люминесцентные лампы подсветки, матовое стекло, поляризационные цветовые фильтры и электронную плату дешифраторов, формирующих из цифровых сигналов RGB напряжения для управления затворами тонкоплёночных транзисторов (TFT). ЖК-панель является завершённым функциональным устройством компьютерного монитора и, как правило, при ремонте разбирать её не следует (за исключением необходимости замены вышедших из строя ламп подсветки).

Например, рассмотрим (рис. 1, а) ЖК-панель CHUNGHWA CLAA170EA. Как видим на рис. 1, на задней стороне ЖК-панели расположена довольно большая печатная плата, к которой от основной платы управления подключен многоконтактный шлейф (сама печатная плата обычно защищена металлической планкой).

etSMz66w.png (896×440)

На печатной плате (рис. 1, б) установлена микросхема NT7168F-00010. Данная микросхема подключена к TFT матрице и участвует в формировании точечного растра изображения на экране дисплея. От контактов микросхемы NT7168F-00010 отходит множество линий связи, которые образуют десять шлейфов S1-S10 (см. рис. 1, б).

Проводники этих шлейфов очень тонкие и на внешний вид они как бы приклеены к печатной плате.

Плата управления. Рассмотрим один из типовых вариантов построения платы управления. Плату управления (рис. 2) обычно называют основной платой ( Main board ), на основной плате размещены два микропроцессора (специализированных микроконтроллера), один из них управляющий 8-битный микроконтроллер SM5964 с ядром типа 8052 и 64 кбайт программируемой Flash-памяти.

Микропроцессор SM5964 выполняет довольно ограниченное число управляющих функций, он обслуживает кнопочную панель и индикаторы работы ЖК-монитора. Микропроцессор SM5964 управляет включением/выключением монитора, запуском инвертора ламп подсветки, а для хранения пользовательских настроек к нему (по шине I 2 C) подключена микросхема памяти (обычно, это микросхемы энергонезависимой памяти серии 24LCxx).

etSMz66x.png (710×518)

Мониторный скалер – это второй специализированный микропроцессор на плате управления (его еще называют — контроллер ЖКИ) типа TSU16AK (рис. 2). Данный микроконтроллер выполняет большинство функций, связанных с преобразованием и обработкой аналогового видеосигнала (или цифрового) и подготовке его к подаче на панель ЖКИ.

Жидкокристаллический монитор является цифровым устройством, в котором всё управление пикселями ЖК-дисплея выполняется в цифровом виде. Если видеосигнал, приходящий с видеоадаптера компьютера является аналоговым, то для его корректного отображения на ЖК-матрице необходимо произвести множество преобразований.

Именно для этого и предназначен этот графический контроллер (или иначе говоря мониторный скалер, или контроллер ЖКИ). В основные функции скалера входят такие как пересчёт (масштабирование) изображения для различных разрешений, формирование экранного меню OSD, обработка аналоговых сигналов RGB и синхроимпульсов.

В контроллере аналоговые сигналы RGB преобразуются в цифровые посредством 3-х канальных 8-битных АЦП, которые работают на частоте 80 МГц. Мониторный скалер TSU16AK взаимодействует и с управляющим микроконтроллером SM5964 по цифровому интерфейсу (шине). Для работы ЖК-панели графический контроллер формирует сигналы синхронизации, тактовой частоты и сигналы инициализации матрицы. Микроконтроллер TSU16AK на плате управления ЖК-панели через шлейф связан и с микросхемой NT7168F-00010.

При неисправностях скалера монитора, обычно появляются дефекты, связанные с неправильным отображением картинки на экране дисплея (на экране могут появляться полосы, рябь и т.п). В некоторых простых случаях эти дефекты устраняются пропайкой выводов скалера (обычно это встречается в мониторах, работающих круглосуточно в жёстких условиях). При длительной работе монитора происходит нагрев компонентов плат, что отрицательно сказывается на качестве соединений пайкой, что и может привести к неисправностям. Дефекты, связанные с качеством пайки нередки и встречаются и у других устройств, причиной неисправности так же служит либо деградация либо некачественная пайка многовыводных планарных микросхем.

Блок питания и инвертор ламп подсветки. Наиболее ремонтопригодным и поэтому интересным в плане изучения, является блок питания ЖК-монитора. Назначение его элементов и схемотехника более конкретны и легче в понимании. По статистике ремонта неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Практические знания по принципам построения и работы блоков питания, его элементной базы и схемотехники будут особенно полезны и востребованы в практике ремонта подавляющего большинства электронных устройств и различной радиоаппаратуры.

Еще по теме:  Как настроить телевизор amcv le 32zth07

Блок питания ЖК-монитора состоит из двух функциональных частей (по сути это два преобразователя):

— AC/DC адаптер или по-другому сетевой импульсный блок питания;

— DC/AC инвертор, обеспечивающий питание люминесцентных ламп подсветки.

AC/DC адаптер служит для преобразования переменного напряжения сети 220 В в постоянное напряжение небольшой величины (обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 вольт). Инвертор DC/AC преобразует полученное постоянное напряжение (DC) в переменное (AC) величиной около 600 — 700 В и частотой около 50 кГц, которое подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.

AC/DC адаптер. Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров, например, в блоке питания ЖК монитора Acer AL1716 (рис.

3) применена микросхема TOP244Y (в документации на микросхему TOP244Y можно найти типовые примеры принципиальных схем блоков питания, что можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы). На рис. 3 и рис. 4 рассмотрены два примера принципиальных схем импульсных блоков питания на базе микросхем серии TOP242 — 249.

etSMz66y.png (959×507)

Рис. 3

В схеме на рис. 4 применены сдвоенные диоды с барьером Шоттки (MBR20100). Аналогичные диодные сборки (SRF5-04) применены в блоке питания (рис. 5) монитора Acer AL1716 (приведённые принципиальные схемы являются примерами, а реальные схемы импульсных блоков питания могут несколько отличаться).

etSMz66z.png (960×528)

Рис. 4

Микросхема TOP245Y (рис. 5) представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ-контроллер и мощный полевой транзистор, который переключается с частотой от десятков до сотен килогерц и формирует импульсы в первичной обмотке трансформатора (отсюда пошло и название блок питания – импульсный).

etSMz66A.png (471×407)

Процесс работы такого импульсного блока питания сводится к следующему:

1) Выпрямление переменного сетевого напряжения 220В.

Выпрямление сетевого напряжения 220В выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе формируется напряжение немного больше чем сетевое. На рис. 5 показан диодный мост, а рядом фильтрующий электролитический конденсатор (емкостью 82 мкФ 450 В).

2) Преобразование напряжения и его понижение с помощью трансформатора.

Коммутацию постоянного напряжения 220-240В с частотой в несколько десятков – сотен килогерц в обмотку высокочастотного импульсного трансформатора выполняет микросхема TOP245Y (рис. 5).

Импульсный трансформатор выполняет ту же роль, что и обычный трансформатор, но работает он на более высоких частотах, во много раз больше, чем 50 герц (поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди). В импульсном трансформаторе необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 герц. В результате трансформатор получается очень компактным. Кроме того, импульсные блоки питания очень экономичны и у них высокий КПД.

3) Выпрямление пониженного трансформатором переменного напряжения.

Для выпрямления пониженного переменного напряжения используют мощные выпрямительные диоды, в нашем примере (см. рис. 5) использованы диодные сборки с маркировкой SRF5-04. Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом (обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но часто используются для выпрямления повышенных напряжений (20 – 50 вольт), что нужно иметь ввиду при замене дефектных диодов.

У диодов Шоттки тоже есть некоторые особенности, которые необходимо учитывать. Эти диоды имеют малую ёмкость перехода и способны быстро переключаться (переходить из открытого состояния в закрытое). Это положительное свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 В (против 0,6 – 0,7 В у обычных диодов).

Это свойство повышает их КПД. Но есть у диодов Шоттки и негативные свойства, которые ограничивают их более широкое использование в электронной технике — они очень чувствительны к превышению обратного напряжения (при превышении обратного напряжения диод Шоттки необратимо выходит из строя). Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоков питания. Об этом надо помнить и учитывать при проведении работ по диагностики и ремонте.

Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи (на схеме рис. 3 она обозначена как R15- C14). На печатной плате блока питания ЖК монитора Acer AL1716 (рис. 6) также имеются демпфирующие цепи, состоящие из smd резистора номиналом 10 Ом (R802, R806) и конденсатора (C802, C811), которые защищают диоды Шоттки (D803, D805).

etSMz66B.png (515×237)

Как правило, диоды Шоттки используются в низковольтных цепях с обратным напряжением, не выше 10 – 18 вольт, а если требуется получение напряжения в несколько десятков вольт (от 20 до 50В), то применяются диоды на основе p-n перехода. Диоды Шоттки чувствительны к перегреву, в связи с этим их, как правило, для отвода тепла устанавливают на алюминиевый радиатор (отличить диод на основе p-n перехода от диода Шоттки можно по условному графическому обозначению на схеме (рис. 7).

etSMz66C.png (489×184)

После выпрямительных диодов всегда ставятся электролитические конденсаторы, обеспечивающие сглаживание пульсаций постоянных выходных напряжений (12 В; 5 В; 3,3 В) которые, запитывают все блоки LCD-монитора.

Инвертор DC/AC. По своему назначению инвертор схож с электронными пуско-регулирующими аппаратами, применяемыми в осветительной технике для питания бытовых осветительных люминесцентных ламп, но у инверторов ЖК мониторов есть существенные отличия. Инвертор ЖК-монитора, как правило, построен на специализированной микросхеме, которая значительно расширяет набор функций и повышает надёжность схемы (например, инвертор ламп подсветки ЖК-монитора Acer AL1716 построен на базе ШИМ контроллера OZ9910G, который запаян на печатной плате планарным монтажом (см. рис. 8).

etSMz66D.png (341×344)

Инвертор преобразует постоянное напряжение (значение которого обычно составляет 12 вольт — это зависит от варианта схемотехники инвертора) в переменное 600-700 вольт частотой 50 кГц. Контроллер инвертора может управлять яркостью люминесцентных ламп. Сигналы изменения яркости ламп поступают от контроллера ЖКИ (специализированный микропроцессор — мониторный скалер).

К микросхеме-контроллеру подключены полевые транзисторы или их сборки. На рис. 9 показана плата инвертора, на которой к контроллеру OZ9910G подключены две сборки комплементарных полевых транзисторов AP4501SD (сборка полевых транзисторов AP4501SD и её цоколёвка показаны на рис. 10, назначение выводов мощной комплементарной пары МДП-транзисторов AO4600 в корпусе SOIC-8 см. в табл.

1). На плате установлено два высокочастотных трансформатора, служащих для повышения переменного напряжения и подачи его на электроды люминесцентных ламп. Кроме основных элементов, на плате установлены всевозможные радиоэлементы, служащие для защиты от короткого замыкания и неисправности ламп.

etSMz66F.png (460×351)

etSMz66G.png (298×355)

Таблица 1. Назначение выводов мощной комплементарной пары МДП-транзисторов AO4600 в корпусе SOIC-8

№ вывода

Обозна-чение

Источник: al-tm.ru

Оцените статью
Добавить комментарий