Тестер подсветки телевизора своими руками

Такой прибор позволит проверить цепь из более 100 последовательно соединенных светодиодов, то есть его хватит для любого светильника.

Как это устроено. Давайте рассмотрим схему устройства.

На базе таймера NE555 собран генератор прямоугольных импульсов. Частота работы генератора около 20 кГц.

Сигнал с выхода таймера поступает на затвор высоковольтного полевого транзистора. Последний, открываясь, замыкает дроссель на источник питания. На этом этапе происходит накачка энергии в дроссель.

Далее транзистор закрывается, дроссель отдает ранее накопленную энергию в виде всплеска напряжения, которое в десятки раз больше напряжения питания.

Светодиодный тестер ЖК телевизоров и мониторов

Это напряжение выпрямляется в постоянку и накапливается в высоковольтном электролитическом конденсаторе.

Наш dc-dc преобразователь представляет из себя обычный бустер без обратной связи. То есть, выходное напряжение не стабилизировано и зависит от источника питания и мощности нагрузки. Устройство собрано на незамысловатой печатной плате и ее можно скачать вместе с общим архивом.

У вас нет доступа к скачиванию файлов с нашего сервера.

Также ссылки есть в описании под видео (ссылка ИСТОЧНИК).
На холостом ходу напряжение на конденсаторе будет расти, что приведет к пробою последнего. Поэтому в схему был добавлен нагрузочный резистор. Этот же резистор разряжает конденсатор после отключения питания.

На схеме имеется еще 1 резистор, он является токоограничивающим.

Если подключить испытуемый светодиод без этого резистора, то напряжение с конденсатора моментально поступит на диод спалив его кристалл. Резистор подобран так, чтобы ограничивать ток на уровне 5 мА, это значение безопасно для любых светодиодов.

При подключении светодиода или линейки светодиодов, выходное напряжение с преобразователя уменьшается до того значения, которое нужно светодиодам и равняется сумме падения напряжения на всех светодиодах. Грубо говоря, нагрузкой и одновременно стабилизирующим звеном являются сами светодиоды.

Этот пост может содержать партнерские ссылки. Это означает, что я зарабатываю небольшую комиссию за ссылки, используемые без каких-либо дополнительных затрат для вас. Дополнительную информацию смотрите в моей политике конфиденциальности.

Источник: unikumrus.com

Тестер ccfl ламп своими руками

Как-то раз попался мне на глаза блок подсветки фотопленки от неисправного сканера. Назывался он Epson EU-52 Film Adapter:

Внутри его оказалась простая схема, питающая лампу с холодным катодом (английское сокращение — CCFL) длиной 12 см:

Моментально возникла мысль сделать на базе этой схемы устройство для проверки ламп подсветки мониторов. Ведь во многих мониторах тоже стоят CCFL, только большей длины.

Когда ремонтируешь монитор, не всегда понятно, почему отключается подсветка — то ли лампа какая-то неисправна, то ли инвертор. Тестер позволит автономно проверить лампы и ускорить ремонт.

В общем, итоговая схема приняла вот такой вид:

Устройство дает на выходе 2 кВ (на холостом ходу) с частотой 40 кГц и позволяет измерить напряжение и ток через лампу. В качестве измерительного прибора взят индикатор уровня записи от какого-то старого магнитофона с током полного отклонения 160 мкА. Резисторы на 10,7 МОм и 1,8 МОм подобраны так, чтобы при 2 кВ стрелка отклонялась на всю шкалу (2000 В : 0,16 мА = 12500 кОм).

Еще по теме:  Телевизор уно кто производитель

Падением напряжения на диодах моста пренебрегаем. Подстроечник на 15 кОм регулируется так, чтобы в режиме измерения тока максимум был равен 10 мА. Шкалу я не градуировал, качество лампы можно оценить и без этого, просто по отклонению стрелки.

Подстроечником на 1,5 кОм устанавливается такое напряжение питания, чтобы на холостом ходу стрелка отклонялась на всю шкалу, это и будет около 2 кВ на выходе.

Индикатор со своим мостом и переключатель должны быть помещены в заземленный экран, иначе из-за наводок высокого напряжения на индикатор невозможно добиться нулевых показаний тока без лампы.

Недостаток этой схемы — отсутствие защиты от короткого замыкания на выходе. Я поленился ее делать, рассчитывая на свою аккуратность.

Так выглядит готовое устройство:

Практика показала, что хорошие лампы от мониторов с диагональю 15-19″ потребляют 7-10 мА при напряжении 1-1,5 кВ. Если ток значительно меньше, лампа севшая, ее надо менять. Если при нормальном токе лампа светит розоватым цветом, а не белым, она скоро откажет, ее тоже надо менять.

Вы находитесь здесь: Схемы радиоаппаратуры Любительские схемы Измерительные приборы Тестер CCFL

Тестер CCFL

Как-то раз попался мне на глаза блок подсветки фотопленки от неисправного сканера. Назывался он Epson EU-52 Film Adapter:

Внутри его оказалась простая схема, питающая лампу с холодным катодом (английское сокращение — CCFL) длиной 12 см:

Моментально возникла мысль сделать на базе этой схемы устройство для проверки ламп подсветки мониторов. Ведь во многих мониторах тоже стоят CCFL, только большей длины.

Когда ремонтируешь монитор, не всегда понятно, почему отключается подсветка — то ли лампа какая-то неисправна, то ли инвертор. Тестер позволит автономно проверить лампы и ускорить ремонт.

В общем, итоговая схема приняла вот такой вид:

Устройство дает на выходе 2 кВ (на холостом ходу) с частотой 40 кГц и позволяет измерить напряжение и ток через лампу. В качестве измерительного прибора взят индикатор уровня записи от какого-то старого магнитофона с током полного отклонения 160 мкА. Резисторы на 10,7 МОм и 1,8 МОм подобраны так, чтобы при 2 кВ стрелка отклонялась на всю шкалу (2000 В : 0,16 мА = 12500 кОм).

Падением напряжения на диодах моста пренебрегаем. Подстроечник на 15 кОм регулируется так, чтобы в режиме измерения тока максимум был равен 10 мА. Шкалу я не градуировал, качество лампы можно оценить и без этого, просто по отклонению стрелки.

Подстроечником на 1,5 кОм устанавливается такое напряжение питания, чтобы на холостом ходу стрелка отклонялась на всю шкалу, это и будет около 2 кВ на выходе.

Еще по теме:  Где покупать матрицы для телевизоров

Индикатор со своим мостом и переключатель должны быть помещены в заземленный экран, иначе из-за наводок высокого напряжения на индикатор невозможно добиться нулевых показаний тока без лампы.

Недостаток этой схемы — отсутствие защиты от короткого замыкания на выходе. Я поленился ее делать, рассчитывая на свою аккуратность.

Так выглядит готовое устройство:

Практика показала, что хорошие лампы от мониторов с диагональю 15-19″ потребляют 7-10 мА при напряжении 1-1,5 кВ. Если ток значительно меньше, лампа севшая, ее надо менять. Если при нормальном токе лампа светит розоватым цветом, а не белым, она скоро откажет, ее тоже надо менять.

Рис.1 Схема простейшего инвертора для ламп CCFL.

Самое простое решение таймер NE555 во втором режиме, режиме генератора прямоугольных импульсов (так называемый нестабильный режим, когда на выходе идет меандр из прямоугольных импульсов, то есть выход нестабилен).

Рис.2 Инвертор в сборе, без балластного конденсатора и лампы

Почему именно эта схема, есть еще более простые генераторы, например на ШИМ UC3843 (UC3845), там вообще нужны всего резистор и конденсатор. Но именно в этой схеме реализованы простые элементы со стандартными значениями, и вам не придется искать конденсатор на 4,7нФ и резистор на 8,2 кОм. Элементная база используемая в этом генераторе снимается практически с любого электронного устройства имеющего в своем составе блок питания. Мы говорим о случае, когда купить отдельные элементы довольно сложно.

Рис. 3 Силовой ключ. IRF 730(5,5А, 400В, 1 Ом)

Транзистор на схеме не обозначен, ставим, например IRF510 (IRF540). В нашем примере был установлен транзистор IRF 730(5,5А, 400В, 1 Ом)

Важное замечание. После того как лампа зажжется, ее сопротивление становится равным нулю, только благодаря балластному конденсатору не происходит короткого замыкания во вторичной обмотке. Это единственный элемент на схеме, который придется подбирать. Самое главное – рабочее напряжение конденсатора не должно быть менее 1000В.

Рис. 3 ВЧ — трансформатор, снят с неисправного монитора, грифлик установлен непосредственно на трансформаторе.

Трансформатор берется первый попавшийся ВЧ-трансформатор из неисправного монитора. Грифлик (С4 10n *1000В) необходимо размещать непосредственно на ВЧ-трансформаторе.

Инвертор зажигает, как перегоревшие лампы от энергосберегающих ламп, так и лампы CCFL с мониторов. Так как запуска ламп при таком инверторе не предусмотрено, соответсвенно лампы работают в довольно жестком режиме.

Источник: dj-sensor.ru

Устройство для проверки светодиодов. Конструкция выходного дня

При ремонте светодиодных ламп часто требуется проверить светодиод. При этом светодиоды нынче бывают разные, в том числе несколько включенных последовательно в одной сборке, что не каждый тестер «переварит», кроме того крайне полезно проверять их бОльшим током чем тот что типично обеспечивает обычный тестер.
внимание, многофото!

В данном случае я применил стабилизаторы тока на 20мА nsi45020, можно купить например тут (я брал в другом месте, та ссылка протухла).

Еще по теме:  Телевизор взорвался к чему сниться

Также нам понадобятся (ссылки справочно, я покупал как правило в других местах):
— выключатель, например тут
— корпус (обзор на него)
— гнёзда (очень хорошие, брал в других местах тоже — эти лучшие)
— платы защиты и зарядки лития
— step-up преобразователь
— измерительный пинцет

а также «по сусекам»: литиевая банка небольших размеров, светодиод, резистор 1кОм, провода, каптоновый скотч.

Дополнительная информация






будем собирать вот такое:

Начинаем с корпуса. Делаем примерно так:




Также я сделал дремелем два паза внутри

И такую вот штучку для удобного крепления выключателя:

Выглядит так:

Клеится внутрь корпуса на суперклей, в него вставляется переключатель и шпеньки плавим паяльником, обеспечивая его вполне надежное крепление.


Ну и собираем потиху:

Для удобного крепления стабилизатора я сделал платку из одностороннего фольгированного стеклотекстолита, просто пропилив фольгу на две половинки.

Аккумулятор обернул каптоновым скотчем на всякий случай. Лепестки на клеммниках потом развернул в стороны — так меньше вероятность соприкосновения с акумом

Подключаем вольтметр к выходным клеммам, и крутим подстроечный резистор повышающего преобразователя через специально обученное отверстие.

Я накрутил 15 вольт

Проверим ток:

Ну и в работе:

И даже так

Как по мне — КРАЙНЕ полезная штука. Она позволяет проверить светодиоды током 20мА, что позволяет выявить полудохлые диоды, которые от тестера вроде как светятся, а в реале — мигают; позволяет проверять последовательно включенные диоды, что мы видим на примере светодиодной полосы, где они включены по три последовательно.

Как вариант апгрейда — поставить переключатель на три положения, например ss23e04, и еще стабилизатор тока amc7135, получив таким образом два режима проверки — 20мА и 350мА. Еще одно возможное дополнение — миниатюрный вольтметр для измерения падения напряжения на проверяемом диоде. Но придётся ставить бóльший корпус, что, возможно и к лучшему — можно запихать 18650 например.

Несомненно, данный девайс нужен далеко не каждому, и бывает полезен в основном при ремонте светодиодных ламп, фонарей, светильников и т.д. Но для таких ремонтов — это просто незаменимая штука, и я крайне доволен результатом. Буду делать второй — этот был под заказ брательнику 😉

В связи с этим хочу попросить ссылочки на ХОРОШИЕ измерительные пинцеты. Потому что мой только для проверки светодиодов и годится.

UPD: к вопросу о ЛБП (импульсных) и проверке светодиодов. как видим, если вначале подключить, а потом включить выход ЛБП — то всё ок. если наоборот — светодиоду кирдык. сразу прощу прощения — руки грязные потому что на работе, камера овно потому что в телефоне.


Добавить в избранное Понравилось +94 +148

  • 26 марта 2019, 18:59
  • автор: uncle_sem
  • просмотры: 24418

Источник: mysku.me

Оцените статью
Добавить комментарий