Мониторы и видеоадаптеры устройство принцип действия подключение

Мониторы на основе электронно-лучевой трубки (ЭЛТ): основные принципы работы, типы ЭЛТ, конструкция, технические характеристики мониторов. Стандарты ТСО. Обзор основных моделей.

Жидкокристаллические мониторы. Принцип действия и технологии ЖК-монитора. Контроллер ЖК-экрана. Технические характеристики ЖК-мониторов. Сравнительный анализ ЖК-мониторов и мониторов на основе ЭЛТ.

Обзор основных моделей.

Плоскопанельные мониторы: плазменные дисплеи, электролюминесцентные мониторы, мониторы электростатической эмиссии, органические светодиодные мониторы. Принцип действия, основные преимущества и недостатки.

Видеоадаптеры: назначение, функции и типы. Режимы работы и характеристики видеоадаптеров, их основные компоненты и характеристики. Выбор видеоадаптера.

Устройства захвата и ввода-вывода видеосигнала: основные компоненты и характеристики. Линейный и нелинейный монтаж: функции, средства сжатия. Интерфейс DirectX. Программное обеспечение аппаратных средств ввода-вывода видеосигнала.

Распаковка и подключение монитора THUNDEROBOT F23H60

Мультимедийные проекторы: принцип действия и классификация. Принципиальные схемы TFT-проекторов, полисиликоновых проекторов, D-ILA, DMD/DLP-проекторов. Их достоинства и недостатки. Принцип действия 3D-проекторов. Основные характеристики мультимедийных проекторов.

Тест 4. «Мониторы»

Вариант 1.

1. По принципу действия мониторы для ПК принято разделять на:

А) плоскопанельные и кинескопные; Б) аналоговые и цифровые;

В) растровые и векторные; Г) цветные и монохромные.

2. Какие из характеристик не относятся к ЖК-мониторам:

А) размер экрана; Б) защитный экран; В) покрытие экрана;

Г) разрешающая способность; Д) муар.

3. Какого предела не должна превышать потребляемая мощность для цветных мониторов:

А) 40 Вт; Б) 60 Вт; В) 70 Вт; Г) 90 Вт.

4. Ландшафтную (пейзажную) и портретную ориентацию могут иметь:

А) ЭЛТ- мониторы; Б) ЖК-мониторы; В) ЖК- экраны ноутбука.

5. Расстояние между ближайшими отверстиями в цветоделительной маске монитора — это:

А) разрешающая способность монитора; Б) диагональ экрана;

В) размер зерна экрана.

6. От чего зависит срок службы монитора в большей мере:

A) от температуры его нагрева при работе;

В) от количества времени работы без перерыва;

Б) от механических воздействий;

Г) не зависит ни от чего, а соответствует гарантийному сроку.

7. В соответствии с нормами ТСО-99 минимальная частота регенерации монитора должна составлять:

А) не менее 60Гц; Б) 85 Гц; В) 90 Гц; Г) 100 Гц.

8. По принципу использования видеосигналов мониторы принято разделять на:

А) плоскопанельные и кинескопные; Б) растровые и векторные;

В) цветные и монохромные; Г) аналоговые и цифровые.

9. Какие показатели ЖК-монитров позволила улучшить технология TFT (тонкопленочный транзистор):

А) яркость; Б) цветопередача; В) угол зрения; Г) контрастность; Д) срок службы.

10. Для чего используется кварцевое покрытие мониторов:

Всё о видеокартах за 11 минут

А) для придания антибликовых и антистатических свойств;

Б) для защиты от широкого диапазона излучений;

В) для защиты от механических воздействий.

Вариант 2.

1. По способу отображения цвета мониторы для ПК принято разделять на:

А) плоскопанельные и кинескопные; Б) аналоговые и цифровые;

В) растровые и векторные; Г) цветные и монохромные.

2. Какие из характеристик относятся к ЖК-мониторам:

А) размер экрана; Б) защитный экран; В) ориентация экрана;

Г) разрешающая способность; Д) муар.

3. Какого предела не должна превышать потребляемая мощность для мониторов размером 14”:

А) 40 Вт; Б) 60 Вт; В) 70 Вт; Г) 90 Вт.

4. Какую ориентацию имеют ЭЛТ-мониторы:

А) портретную; Б) пейзажную; В) портретную и пейзажную.

5. Разрешающая способность монитора — это:

А) Расстояние между ближайшими отверстиями в цветоделительной маске;

Б) число элементов изображения, которые он способен воспроизводить по горизонтали и

В) расстояние между соседними элементами люминофора одного цвета.

6. Монитор со встроенной акустической системой называется::

A) ноутбук;Б) совместимый; В) мультимедийный; Г) проекционный.

7. В соответствии с нормами ТСО-99 комфортная для работы частота регенерации монитора должна быть:

А) не менее 60Гц; Б) 85 Гц; В) 90 Гц; Г) 100 Гц.

8. Основными недостатками плазменных дисплеев по сравнению с ЖК-мониторами

А) высокая потребляемая мощность; Б) величина поля обзора;

В) низкая разрешающая способность; Г) яркость и контрастность изображения.

9. Монохромные мониторы могут быть:

А) черно-белыми; Б) черно-голубыми; В) черно-зелеными; Г) черно-желтыми.

10. Расстояние между соседними элементами люминофора одного цвета – это:

А) разрешение монитора; Б) размер диагонали экрана; В) шаг точки (размер зерна).

Еще по теме:  Монитор Acer k222hql характеристики

Тема программы «Устройства вывода информации на печать»

Студент должен знать:

— принципы работы устройств вывода информации на печать;

— основные узлы и особенности эксплуатации печатающих устройств;

— технические характеристики печатающих устройств;

Основные дидактические единицы

Общие характеристики устройств вывода на печать. Классификация печатающих устройств.

Принтеры ударного типа: принцип действия, механические узлы, особенности работы, технические характеристики, правила эксплуатации. Основные современные модели.

Струйные принтеры: принципы работы, основные узлы, особенности работы, основные параметры, правила эксплуатации. Основные современные модели.

Лазерные принтеры: принцип действия, функциональная схема, особенности работы, основные параметры. Язык управления принтером. Правила эксплуатации. Основные современные модели.

Плоттеры: назначение, принцип действия, классификация. Конструктивные особенности и основные технические характеристики плоттеров.

Специализированные устройства печати: термические, светодиодные, сублимационные. Принцип работы, основные узлы, основные параметры.

Подключение и инсталляция печатающих устройств. Настройка параметров работы принтеров. Замена картриджей. Себестоимость печати.

Источник: poisk-ru.ru

Видеоадаптеры и их назначение

Видеокарта — электронное устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой.

В настоящее время, однако, эта базовая функция, оставаясь нужной и востребованной, ушла в тень, перестав определять уровень возможностей формирования изображения — качество видеосигнала (чёткость изображения) очень мало связано с ценой и техническим уровнем современной видеокарты. В первую очередь, сейчас под графическим адаптером понимают устройство с графическим процессором — графический ускоритель, который и занимается формированием самого графического образа. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.

Обычно видеокарта выполнена в виде печатной платы (плата расширения) и вставляется в разъём расширения, универсальный либо специализированный (AGP). Также широко распространены и встроенные (интегрированные) в системную плату видеокарты — как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ; в этом случае устройство, строго говоря, не может быть названо видеокартой.

Современная видеокарта состоит из следующих частей:

Графический процессор (Graphics processing unit (GPU) — графическое процессорное устройство) занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков. Однако архитектура GPU прошлого поколения обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.

Видеоконтроллер отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

Постоянное запоминающее устройство

Видео-ПЗУ (Video ROM) — постоянное запоминающее устройство (ПЗУ), в которое записаны BIOS видеокарты, экранные шрифты, служебные таблицы и т.п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор.BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, задаёт все низкоуровневые параметры видеокарты, в том числе рабочие частоты и питающие напряжения графического процессора и видеопамяти, тайминги памяти. Также, VBIOS содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

Еще по теме:  Минимальная диагональ s для монитора планшета

Видеопамять выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные.

Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, GDDR2, GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. В случае использования архитектуры Uniform Memory Access в качестве видеопамяти используется часть системной памяти компьютера.

Цифро-аналоговый преобразователь (ЦАП; RAMDAC — Random Access Memory Digital-to-Analog Converter) служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC.

Чаще всего RAMDAC имеет четыре основных блока: три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий — RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП. Стоит отметить, что мониторы и видеопроекторы, подключаемые к цифровому DVI выходу видеокарты, для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят.

Видеоадаптеры MDA, Hercules, EGA и CGA оснащались 9-контактным разъёмом типа D-Sub. Изредка также присутствовал коаксиальный разъём Composite Video, позволяющий вывести черно-белое изображение на телевизионный приемник или монитор, оснащенный НЧ-видеовходом.В настоящее время платы оснащают разъёмами DVI или HDMI, либо DisplayPort в количестве от одного до трёх (некоторые видеокарты ATi последнего поколения оснащаются шестью коннекторами). Порты DVI и HDMI являются эволюционными стадиями развития стандарта передачи видеосигнала, поэтому для соединения устройств с этими типами портов возможно использование переходников. Порт DVI-I также включает аналоговые сигналы, позволяющие подключить монитор через переходник на старый разъём D-SUB (DVI-D не позволяет этого сделать). DisplayPort позволяет подключать до четырёх устройств, в том числе аудиоустройства, USB-концентраторы и иные устройства ввода-вывода.

Также на видеокарте могут быть размещены композитный и компонентный S-Video видеовыход; также видеовход (обозначаются, как ViVo).

Система охлаждения предназначена для сохранения температурного режима видеопроцессора и (зачастую) видеопамяти в допустимых пределах.

Также, правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.

Источник: studentopedia.ru

2.14. Что такое видеосистема компьютера?

Видеоадаптер посылает в монитор сигналы управления яркостью лучей и синхросигналы строчной и кадровой развёрток. Монитор преобразует эти сигналы в зрительные образы. А программные средства обрабатывают видеоизображения — выполняют кодирование и декодирование сигналов, координатные преобразования, сжатие изображений и др.

Монитор — устройство визуального отображения информации (в виде текста, таблиц, рисунков, чертежей и др.).

Рис. 2.14. Монитор

Подавляющее большинство мониторов сконструированы на базе электронно-лучевой трубки (ЭЛТ), и принцип их работы аналогичен принципу работы телевизора. Мониторы бывают алфавитно-цифровые и графические, монохромные и цветного изображения. Современные компьютеры комплектуются, как правило, цветными графическими мониторами.

Еще по теме:  Экран монитора стал голубым как исправить

Основной элемент дисплея — электронно-лучевая трубка.

Её передняя, обращенная к зрителю часть с внутренней стороны покрыта люминофором — специальным веществом, способным излучать свет при попадании на него быстрых электронов.

Рис. 2.15. Схема электронно-лучевой трубки

Люминофор наносится в виде наборов точек трёх основных цветов — красного , зелёного и синего . Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра.

Рис. 2.16. Пиксельные триады

Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксел — точку, из которых формируется изображение (англ. pixel — picture element, элемент картинки).

Расстояние между центрами пикселов называется точечным шагом монитора . Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость. Обычно в цветных мониторах шаг составляет 0,28 мм. При таком шаге глаз человека воспринимает точки триады как одну точку «сложного» цвета.

На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки «нацелены» на один и тот же пиксел, но каждая из них излучает поток электронов в сторону «своей» точки люминофора.

Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны.

Перед экраном на пути электронов ставится маска — тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета.

Величиной электронного тока пушек и, следовательно, яркостью свечения пикселов, управляет сигнал, поступающий с видеоадаптера.

Рис. 2.17. Ход электронного пучка по экрану

На ту часть колбы, где расположены электронные пушки, надевается отклоняющая система монитора, которая заставляет электронный пучок пробегать поочерёдно все пикселы строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д.

Количество отображённых строк в секунду называется строчной частотой развертки . А частота, с которой меняются кадры изображения, называется кадровой частотой развёртки . Последняя не должна быть ниже 60 Гц, иначе изображение будет мерцать.

Наряду с традиционными ЭЛТ-мониторами все шире используются плоские жидкокристаллические (ЖК) мониторы.

Жидкие кристаллы — это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

Рис. 2.18. Жидкокристалический
монитор

Большинство ЖК-мониторов использует тонкую плёнку из жидких кристаллов, помещённую между двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу — сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

Активные матрицы вместо нитей используют прозрачный экран из транзисторов и обеспечивают яркое, практически не имеющее искажений изображение. Панель при этом разделена на 308160 (642х480) независимых ячеек, каждая из которых состоит из четырех частей (для трёх основных цветов и одна резервная). Таким образом, экран имеет почти 1,25 млн точек, каждая из которых управляется собственным транзистором.

По компактности такие мониторы не знают себе равных. Они занимают в 2 — 3 раза меньше места, чем мониторы с ЭЛТ и во столько же раз легче; потребляют гораздо меньше электроэнергии и не излучают электромагнитных волн, воздействующих на здоровье людей.

Рис. 2.19. Сенсорный экран

Разновидность монитора — сенсорный экран . Здесь общение с компьютером осуществляется путём прикосновения пальцем к определённому месту чувствительного экрана. Этим выбирается необходимый режим из меню, показанного на экране монитора.

Меню — это выведенный на экран монитора список различных вариантов работы компьютера, по которому можно сделать конкретный выбор.

Сенсорными экранами оборудуют рабочие места операторов и диспетчеров, их используют в информационно-справочных системах и т.д.

Источник: www.examen.ru

Оцените статью
Добавить комментарий